Effect of Sintering Method on Surface Fatigue of Carbide Composites

Article Preview

Abstract:

In this work the influence of sintering method on the surface fatigue of carbide composite was studied. The research focuses on WC-15wt%Co hardmetals prepared using different powders and different sintering techniques and as a result different microstructure: conventional WC+Co powder and novel reactive powder type W+C+Co are sintered using vacuum furnace, compression sintering (sinterhipping) and spark plasma sintering (SPS method). As tungsten carbide is a common material for cold forming punches and surface degradation causes punch failure [1], the tool life can be significantly extended by material surface fatigue life improvement. It is expected that SPS production route of WC-15wt%Co hardmetal will conclude in better microstructure, more even average grain size distribution and smaller residual porosity, and respectively better mechanical and surface fatigue properties compared to conventional production routes. There are some expectations related to the reactive sintering production routes, as this technique promotes the fine microstructure and better mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-372

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Zhang, Nanostructured Thin Films and Coatings: Mechanical Properties, CRC Press, Boca Raton, (2010).

Google Scholar

[2] K.J. Brookes, World Dictionary and Handbook of Hard Metals and Hard Materials, sixth ed., Int. Carbide Data, London, (1996).

Google Scholar

[3] M, Loshak, Strength and durability of hardmetals, Naukova Dumka, Kiev, 1984 (in Russian).

Google Scholar

[4] W.D. Schubert, A. Bock, B. Lux, General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production, International Journal of Refractory Metals and Hard Materials 13 (5) (1995) 281-296.

DOI: 10.1016/0263-4368(95)92674-9

Google Scholar

[5] L.H. Zhu, Q.W. Huang, H.F. Zhao, Preparation of nanocrystalline WC-10Co-0. 8VC by spark plasma sintering, Journal of Materials Science Letters 22 (22) (2003) 1631-1633.

Google Scholar

[6] J. Pirso, M. Viljus, R. Joost, K. Juhani, S. Letunovitš, Microstructure Evolution in WC-Co Composites during Reactive Sintering From Nanocrystalline Powders, In: Proc. of the 2008 World Congress on Powder Metallurgy and Particulate Materials, APMI/MPIF, Princeton, (2008).

DOI: 10.3176/eng.2012.2.03

Google Scholar

[7] M. Antonov, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor, Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions, Wear 267 (2009) 898-906.

DOI: 10.1016/j.wear.2008.12.045

Google Scholar

[8] M. Petrov, J. Kübarsepp, F. Sergejev, M. Viljus, Effect of carbide phase and binder chemical composition on surface fatigue of carbide composites, in: Euro PM2015 Congress & Exhibition Proceedings, EPMA, Shrewsbury, (2016).

DOI: 10.4028/www.scientific.net/kem.721.368

Google Scholar

[9] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC-Co cermets, Journal of Materials Science 20 (5) (1985) 1873-1882.

DOI: 10.1007/bf00555296

Google Scholar

[10] U. Shleinkofer, H. Sockel, K. Görtig, W. Heinrich, Fatigue of hard metals and cermets, Materials Science and Engineering: A 209 (1996) 313-317.

DOI: 10.1016/0921-5093(95)10106-3

Google Scholar

[11] T. Sailer, M. Herr, H. -G. Sockel, R. Schulte, H. Feld, L.J. Prakash, Microstructure and mechanical properties of ultrafine-grained hard, International Journal of Refractory Metals & Hard Materials 19 (2001) 553-559.

DOI: 10.1016/s0263-4368(01)00041-5

Google Scholar

[12] L. Llanes, Y. Torres, M. Anglada, On the fatigue crack growth behavior of WC-Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity, Acta Materialia 50 (2002) 2381-2393.

DOI: 10.1016/s1359-6454(02)00071-x

Google Scholar

[13] H. Klaasen, J. Kübarsepp, F. Sergejev, Strength and failure of TiC based cermets, Powder Metallurgy 52 (2) (2009) 111-115.

DOI: 10.1179/174329008x315575

Google Scholar