[1]
D. C. Drucker, A more fundamental approach to plastic stress strain relations, in Proc. 1st. U.S. Natl. Congress Appl. Mech., (1951), 487-491.
Google Scholar
[2]
P. J. Armstrong, C. O. Frederick, A mathematical representation of the multiaxial Bauschinger effect. GEGB report RD/B/N731. (1966), Berkley Nuclear Laboratories.
Google Scholar
[3]
J. F. Besseling, A theory of elastic, plastic and creep deformations of an initially isotropic material, J. Appl. Mech. 25 (1958), 529-536.
DOI: 10.1115/1.4011867
Google Scholar
[4]
N. Ohno, J. D. Wang, Nonlinear kinematic hardening rule with critical state of dynamic recovery, Part I: Formulation and basic features for ratchetting behavior, Int. J. Plasticity 9 (1993), 375-390.
DOI: 10.1016/0749-6419(93)90042-o
Google Scholar
[5]
J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plasticity 7 (1991), 661–678.
DOI: 10.1016/0749-6419(91)90050-9
Google Scholar
[6]
Z. Mroz, On the description of the work-hardening. J. Mech. Phys. Solids 15 (1967) 163–175.
Google Scholar
[7]
F. Yoshida, T. Uemori, K. Fujiwara, Elastic-Plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain. Int. J. Plasticity 18, 633-660.
DOI: 10.1016/s0749-6419(01)00049-3
Google Scholar
[8]
F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int. J. Plasticity 18 (2002), 661-686.
DOI: 10.1016/s0749-6419(01)00050-x
Google Scholar
[9]
F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity and its application to springback simulation, Int. J. of Mech. Sci., 45 (2003) 1687-1702.
DOI: 10.1016/j.ijmecsci.2003.10.013
Google Scholar
[10]
S. Sumikawa, A. Ishiwatari, J. Hiramoto, Improvement of springback prediction accuracy by considering nonlinear elastoplastic behavior after stress reversal, J. JSTP, 57 (2016), 635-640. (in Japanese).
DOI: 10.1016/j.jmatprotec.2016.11.005
Google Scholar