Characterizing Fracture Development in Ti-Alloy with I-Type Cracks Using Acoustic Emission and Thermal Infrared Imaging

Article Preview

Abstract:

This paper discusses the plastic deformation and fracture development of Ti-alloy under uniaxial tension. The energy dissipation and transfer characteristics in the plastic deformation and fracture processes were analyzed using acoustic emission (AE), thermal infrared (TIR) imaging, and thermocouples. Uniaxial tension tests were carried out, during which TIR images were obtained and the AE energy was observed. The mechanical characteristics of Ti-alloy with I-type cracks were analyzed based on the TIR images, AE energy, and temperature. The plastic work of the Ti-alloy specimen was found to dissipate as thermal energy rather than AE energy. Moreover, the TIR images were correlated well with the AE energy observed during the plastic deformation and fracture processes of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

477-482

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jackson, K. Dring, A review of advances in processing and metallurgy of titanium alloys, J Materials Science and Technology. 22(8) (2006) 881-887.

DOI: 10.1179/174328406x111147

Google Scholar

[2] R. W Schuts, H B. Watkins, Recent developments in titanium alloy application in the energy industry, J Materials Science and Engineering A. 243 (1998) 305-315.

DOI: 10.1016/s0921-5093(97)00819-8

Google Scholar

[3] N. Meyendorf, B. Frankenstein, L, Schubert, Structural health monitoring for aircraft, ground transportation vehicles, wind turbines and pipes-prognosis, Emerging Technologies in Non-Destructive Testing V. (2012), 15-22.

Google Scholar

[4] E. Mendoza, J. Prohaska, C. Kempen, Y. Esterkin, S. J. Sun, In-Flight Fiber Optic Acoustic Emission Sensor (FAESense (TM) System for the Real Time Detection, Localization, and Classification of Damage in Composite Aircraft Structures. Photonic Applications for Aerospace, Commercial, and Harsh Environments Iv. 8720.

DOI: 10.1117/12.2018155

Google Scholar

[5] Y.L. Yue, P.Y. Wei, S. H. LI; Acoustic Emission Signature of Fatigue Cracks at Titanium Alloy Welded Joints Journal of Ship Mechanics. 12(3) (2008) 429-439.

Google Scholar

[6] S. Mindess, CRC Handbook of Nondestructive Testing of Concrete Acoustic emission methods, CRC, Boca Raton, FL (2004).

Google Scholar

[7] Y. Seo, Y.R. Kim, Using Acoustic Emission to Monitor Fatigue Damage and Healing in Asphalt Concrete. Ksce Journal of Civil Engineering. Composites Part B. 12(7) (2008) 237-243.

DOI: 10.1007/s12205-008-0237-3

Google Scholar

[8] J. Brown, L. Vendra, A. Rabiei, Bending properties of Al-steel and steel–steel composite metal foams. Metall Mater Trans A. 41(11) (2010) 2784–2793.

DOI: 10.1007/s11661-010-0343-y

Google Scholar

[9] J. S. Wang, L. J. Yao, L. B. Zhang, L. D. Chen,X. Y. Tong, Acoustic Emission Analysis on Low Velocity Impact Damage of 2D C/SiC. Advanced Measurement and Test, Pts 1-3 (2011) 301-303 1367–1371.

DOI: 10.4028/www.scientific.net/amr.301-303.1367

Google Scholar

[10] D.G. Aggelis, E.Z. Kordatos, T.E. Matikas. Acoustic emission for fatigue damage characterization in metal plates. Mechanics Research Communications. 38 (2011) 106–110.

DOI: 10.1016/j.mechrescom.2011.01.011

Google Scholar

[11] B. H. Han, D. J Yoon, Y. H. Huh, Y. S. Lee, Damage assessment of wind turbine blade under static loading test using acoustic emission. Journal of Intelligent Material Systems and Structures. 25(5) (2014) 621–630.

DOI: 10.1177/1045389x13508329

Google Scholar

[12] D.G. Aggelis, E.Z. Kordatos, T.E. Matikas. Acoustic emission for fatigue damage characterization in metal plates. Mech Res Commun. 38(2) (2011) 106–110.

DOI: 10.1016/j.mechrescom.2011.01.011

Google Scholar

[13] B . Yang, P. K. Liaw, G. Wang,W. H. Peter, R. A. Buchanan, Y. Yokoyama, Thermal imaging technologies for detecting damage during high-cycle fatigue, Metall Mater Trans A. 35(A1) (2004) 15–23.

DOI: 10.1007/s11661-004-0104-x

Google Scholar

[14] D. Wagner, N. Ranc, C. Bathias, P. C. Paris, Fatigue crack initiation detection by an infrared thermography method, Fatigue & Fracture of Engineering Materials & Structures, 33(1) (2009) 12–21.

DOI: 10.1111/j.1460-2695.2009.01410.x

Google Scholar

[15] R. Steinberger, T.I. Valadas Leitão, E. Ladstätter, G. Pinter, W. Billinger, R.W. Lang, Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing, International Journal of Fatigue. 28 (2006).

DOI: 10.1016/j.ijfatigue.2006.02.036

Google Scholar

[16] A. Risitano, G. Risitano, Cumulative damage evaluation of steel using infrared thermography, Theor Appl Fract Mech. 54(2) (2010) 82–90.

DOI: 10.1016/j.tafmec.2010.10.002

Google Scholar

[17] E.Z. Kordatos, D.G. Aggelis, T.E. Matikas, Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission Composites Part B. 43(6) (2012) 2676-2686.

DOI: 10.1016/j.compositesb.2011.12.013

Google Scholar

[18] E.Z. Kordatos, K.G. Dassios, D.G. Aggelis, T.E. Matikas, Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission, Mechanics Research Communications. 54 (2013) 14-20.

DOI: 10.1016/j.mechrescom.2013.09.005

Google Scholar

[19] K.G. Dassios, E.Z. Kordatos, D.G. Aggelis, T.E. Matikas, Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications. Scientific World Journal. 2013; Information on http: /dx. doi. org/10. 1155/2013/715945.

DOI: 10.1155/2013/715945

Google Scholar