Dynamic Hydrothermal Synthesis of Super-Low Density Xonotlite Thermal Insulation Materials from Industrial Quartz Powder

Article Preview

Abstract:

Xonotlite was synthesized by dynamic hydrothermal methode with industrial quartz powder as the siliceous materials and calcium hydroxide derived from hydration of calcined calcium carbonate as calcareous material.This paper focused on the influence of particle size of the industrial quartz powder, the mass ratio of water and solid reactants (W/S) and additives on the product composition, apparent density and crystal morphology. The products were characterized by X-ray powder diffraction (XRD), scanning eletron microscope (SEM) and other analysis methodes. Results indicated that in a certain range to decrease particle sizes of quartz powder could improve the content of xonotlite under the help of potassium hydroxide and zirconium oxychloride, the content of xonotlite could reach 99.5% when the particle size of quartz powder decrease to 4.65um no need to the common level of below 1 um in some literature. The product had a very high xonotlite content and perfect particle morphology when the ratio of W/S was controled over 30%; under the help of strontium ions and zirconium ions xonotlite fiber became significantly slimmer with a greater ratio of length to diameter,which was easier to obtain super-low density xonotlite thermal insulation materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

569-575

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Gellert. 8 - Inorganic mineral materials for insulation in buildings. Materials for Energy Efficiency and Thermal Comfort in Buildings. 2010: 193-228.

DOI: 10.1533/9781845699277.2.193

Google Scholar

[2] C. Vakifahmetoglu. Ceramics International. 40(2014): 11925-11932.

Google Scholar

[3] R. L. Frost, M. Mahendran, K. Poologanathan. Materials Research Bulletin. 47(2012): 3644–3649.

Google Scholar

[4] S. P. Wang, X. Q. Peng, L. et al. Construction and Building Materials. 60(2014): 42-47.

Google Scholar

[5] G. S. Wei, Y. S. Liu, X. X. Zhang. Inter. J. Heat and Mass Transfer. 54(2011): 2355–2366.

Google Scholar

[6] L. Liu, F. Liu, J. X. Cao. New Building Materials. (12(2011): 74-77.

Google Scholar

[7] M. Q. Li,H. X. Liang. China Particuology. 2(2004): 124-127.

Google Scholar

[8] Z. H. Tang, S. H. Ma, Y. J. Wang, X. Y. Guo. Chin. J. Process Engineering. 13(2013): 1047-1051.

Google Scholar

[9] E. Gallucci, X. Zhang, K. L. Scrivener. Cement and Concrete Research. 53(2013): 185-195.

Google Scholar

[10] J. Zhen Ji, W. Ni, J. Y. Xiao. New Building Materials. 6(2006): 55-58.

Google Scholar

[11] W. Guan, F. Y. Jin, Z. Y. Fang, et al. Ceramics International. 40(2014): 4415–4420.

Google Scholar

[12] W. Guan, F.Y. Ji, Q. K. Chen, P. Yan. Ceramics International. 39(2013): 1385-1391.

Google Scholar

[13] W. Guan, F. Y. Ji, D. X. Fang, et al. Ceramics International. 40(2014): 1667-1674.

Google Scholar

[14] J. Wu, Y. J. Zhu, G. F. Cheng, Y. H. Huang. Materials Research Bulletin. 45(2010): 509–512.

Google Scholar

[15] F. Liu, X. D. Wang, J. X. Cao. Physics Procedia. 25(2012): 56-62.

Google Scholar

[16] J.Y. Xiao,W. Ni, K.Y. Wang, et al. J. Liaoning Technical Univ. (Nat. Sci. ). 28(2009): 645-648.

Google Scholar

[17] J. X. Cao, F. Liu, Q. Lin, Y. Zhang. Progress in Natural Science. 18(2008): 1147–1153.

Google Scholar

[18] A. M. Rashad, S. R. Zeedan, H. A. Hassan. Construction and Building Materials. 33(2012): 70-77.

Google Scholar

[19] L.Z. Pei, L.J. Yang, Y. Yang, et al. Materials Characterization. 61(2010): 1281-1285.

Google Scholar

[20] Y.S. Lei, T. Han, H. Q. Wang. Bulletin of the Chinese Ceramic Society. 33(2014): 465-469.

Google Scholar

[21] W. Tan, G. R. Zhu, Y. Liu, Z. H. Zhang. Cement and Concrete Research. 72 (2015): 69–75.

Google Scholar

[22] R. J. Myers, E. L'Hôpital, J. L. Provis, Cement and Concrete Research. 68(2015): 83-93.

Google Scholar

[23] R. Dachowski, A. Stępień. Procedia engineering. 21(2011): 1173-1178.

Google Scholar

[24] H. P. Ebert, F. Hemberger. International Journal of Thermal Sciences. 50(2011): 1838-1844.

Google Scholar