Preparation and Properties of Nanocomposite MWCNTs/Polyamide Reverse Osmosis Membrane for Desalination by Interfacial Polymerization

Article Preview

Abstract:

Thin film nanocomposite (TFN) polyamide (PA) reverse osmosis (RO) membranes incorporating carboxylic multiwall carbon nanotubes (c-MWCNTs) were successfully synthesized by interfacial polymerization with aqueous solution of m-phenylenediamine (MPD) containing c-MWCNTs and Isopar G solution of trimesoly chloride (TMC). In order to improve the dispersion of MWCNTs in polymer matrix, carboxylic groups was modified onto the pristine MWCNTs by acid mixture (sulfuric acid and nitric acid of 3:1 volume ratio) and mixture of sulfuric acid and hydrogen peroxide (4:1 volume ratio). The feasibility of carboxylic on MWCNTs was evaluated by FT-IR, SEM, TEM and Raman spectroscopy analysis. Apparent size distribution and suspension of c-MWCNTs showed the well dispersion condition of c-MWCNTs in water which also proved the successful carboxylic of MWCNTs. The effect of c-MWCNTs incorporation into the PA selective layer on the surface morphology, separation performance and antifouling properties of the membranes were investigated and discussed. The “leaf-like” and granules outgrowth morphology of nanocomposite was observed by SEM and the c-MWCNTs incorporated in PA layer were observed by TEM. After doping c-MWCNTs, the water flux of TFN membranes increased due to higher hydrophilicity and additional water pathways of c-MWCNTs. It is noteworthy that the TFN membrane with 0.005 wt% c-MWCNTs could exhibit water flux as high as 68.3 L·m-2·h-1 and the NaCl rejection maintained at 96.0%. Meanwhile, the TFN membrane with 0.005 wt% c-MWCNTs showed better antifouling affinity than c-MWCNTs free membrane due to the increased in hydrophilicity as well as surface negative charge. Based on the result, it can be concluded that incorporating an appropriate amount of c-MWCNTs into PA rejection layer could potentially improve the performance of TFN membrane during RO applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1016-1025

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.G. Gude: Water Research, Vol. 89 (2016), p.87.

Google Scholar

[2] M. Elimelech and W.A. Phillip: Science, Vol. 333 (2011) No. 6043, p.712.

Google Scholar

[3] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas and A.M. Mayes: Nature, Vol. 452 (2008) No. 7185, p.301.

Google Scholar

[4] M.R. Bao, G.R. Zhu, L. Wang, M. Wang and C.J. Gao: Desalination, Vol. 309 (2013), p.261.

Google Scholar

[5] H. Huang, X.Y. Qu, X.S. Ji, X. Gao, L. Zhang, H.L. Chen and L.A. Hou: Journal of Materials Chemistry A, Vol. 1 (2013) No. 37, p.11343.

Google Scholar

[6] T. Shintani, H. Matsuyama and N. Kurata: Desalination, Vol. 247 (2009) No. 1, p.370.

Google Scholar

[7] A.K. Ghosh, B.H. Jeong, X. Huang and E.M.V. Hoek: Journal of Membrane Science, Vol. 311 (2008) No. 1–2, p.34.

Google Scholar

[8] R. Ma, Y.L. Ji, X.D. Weng, Q.F. An and C.J. Gao: Desalination, Vol. 381 (2016), p.100.

Google Scholar

[9] H. Wang, L. Li, X. Zhang and S. Zhang: Journal of Membrane Science, Vol. 353 (2010) No. 1-2, p.78.

Google Scholar

[10] A. Akbari, E. Aliyarizadeh, S.M. Mojallali Rostami and M. Homayoonfal: Desalination, Vol. 377 (2016), p.11.

DOI: 10.1016/j.desal.2015.08.025

Google Scholar

[11] D. Nikolaeva, C. Langner, A. Ghanem, M.A. Rehim, B. Voit and J. Meier-Haack: Journal of Membrane Science, Vol. 476 (2015), p.264.

DOI: 10.1016/j.memsci.2014.11.051

Google Scholar

[12] Y. Mansourpanah and E.M. Habili: Journal of Membrane Science, Vol. 430 (2013), p.158.

Google Scholar

[13] C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.H. Kim, S.S. Bae, J. Park and J. Yoon: Journal of Industrial and Engineering Chemistry, Vol. 18 (2012) No. 5, p.1551.

DOI: 10.1016/j.jiec.2012.04.005

Google Scholar

[14] K.P. Lee, T.C. Arnot and D. Mattia: Journal of Membrane Science, Vol. 370 (2011) No. 1-2, p.1.

Google Scholar

[15] D. Li and H. Wang: Journal of Materials Chemistry, Vol. 20 (2010) No. 22, p.4551.

Google Scholar

[16] D. Rana and T. Matsuura: Chemical Reviews, Vol. 110 (2010) No. 4, p.2448.

Google Scholar

[17] C.K. Kim, J.H. Kim, I.J. Roh and J.J. Kim: Journal of Membrane Science, Vol. 165 (2000) No. 2, p.189.

Google Scholar

[18] T. Ishigami, K. Amano, A. Fujii, Y. Ohmukai, E. Kamio, T. Maruyama and H. Matsuyama: Separation and Purification Technology, Vol. 99 (2012), p.1.

DOI: 10.1016/j.seppur.2012.08.002

Google Scholar

[19] A.C. Sagle, E.M. Van Wagner, H. Ju, B.D. McCloskey, B.D. Freeman and M.M. Sharma: Journal of Membrane Science, Vol. 340 (2009) No. 1-2, p.92.

Google Scholar

[20] R. Reis, L.F. Dumée, L. He, F. She, J.D. Orbell, B. Winther-Jensen and M.C. Duke: ACS Applied Materials & Interfaces, Vol. 7 (2015) No. 27, p.14644.

DOI: 10.1021/acsami.5b01603

Google Scholar

[21] J.H. Wu, Z. Wang, Y. Wang, W.T. Yan, J.X. Wang and S.C. Wang: Journal of Membrane Science, Vol. 495 (2015), p.1.

Google Scholar

[22] L. Zou, I. Vidalis, D. Steele, A. Michelmore, S.P. Low and J.Q.J.C. Verberk: Journal of Membrane Science, Vol. 369 (2011) No. 1-2, p.420.

DOI: 10.1016/j.memsci.2010.12.023

Google Scholar

[23] Q.H. She, R. Wang, A.G. Fane and C.Y.Y. Tang: Journal of Membrane Science, Vol. 499 (2016), p.201.

Google Scholar

[24] S. Daer, J. Kharraz, A. Giwa and S.W. Hasan: Desalination, Vol. 367 (2015), p.37.

Google Scholar

[25] J.R. Werber, A. Deshmukh and M. Elimelech: Environmental Science & Technology Letters, Vol. 3 (2016) No. 4, p.112.

Google Scholar

[26] G. Hummer, J.C. Rasaiah and J.P. Noworyta: Nature, Vol. 414 (2001) No. 6860, p.188.

Google Scholar

[27] A. Hirsch: Angewandte Chemie International Edition, Vol. 41 (2002) No. 11, p.1853.

Google Scholar

[28] K. Balasubramanian and M. Burghard: Small, Vol. 1 (2005) No. 2, p.180.

Google Scholar

[29] A. Eitan, K. Jiang, D. Dukes, R. Andrews and L.S. Schadler: Chemistry of Materials, Vol. 15 (2003) No. 16, p.3198.

Google Scholar

[30] J.H. Choi, J. Jegal and W.N. Kim: Journal of Membrane Science, Vol. 284 (2006) No. 1-2, p.406.

Google Scholar

[31] M. Son, H.G. Choi, L. Liu, E. Celik, H. Park and H. Choi: Chemical Engineering Journal, Vol. 266 (2015), p.376.

Google Scholar

[32] H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon and J.C. Lee: ACS Applied Materials & Interfaces, Vol. 6 (2014) No. 4, p.2819.

Google Scholar

[33] H.Y. Zhao, S. Qiu, L.G. Wu, L. Zhang, H.L. Chen and C.J. Gao: Journal of Membrane Science, Vol. 450 (2014), p.249.

Google Scholar

[34] J. Park, W. Choi, S.H. Kim, B.H. Chun, J. Bang and K.B. Lee: Desalination and Water Treatment, Vol. 15 (2010) No. 1-3, p.198.

Google Scholar

[35] S.H. Huang, C.J. Hsu, D.J. Liaw, C.C. Hu, K.R. Lee and J.Y. Lai: Journal of Membrane Science, Vol. 307 (2008) No. 1, p.73.

Google Scholar

[36] J.A. Thomas and A.J.H. McGaughey: Physical Review Letters, Vol. 102 (2009) No. 18, p.184502.

Google Scholar

[37] H.Y. Zhao, L.G. Wu, Z.J. Zhou, L. Zhang and H.L. Chen: Physical Chemistry Chemical Physics, Vol. 15 (2013) No. 23, p.9084.

Google Scholar

[38] I.H. Huisman, P. Prádanos and A. Hernández: Journal of Membrane Science, Vol. 179 (2000) No. 1-2, p.79.

Google Scholar

[39] S. Boributh, A. Chanachai and R. Jiraratananon: Journal of Membrane Science, Vol. 342 (2009) No. 1-2, p.97.

Google Scholar

[40] R.L. Qi, R. Guo, M.W. Shen, X.Y. Cao, L.Q. Zhang, J.J. Xu, J.Y. Yu and X.Y. Shi: Journal of Materials Chemistry, Vol. 20 (2010) No. 47, p.10622.

Google Scholar

[41] V. Kochkodan and N. Hilal: Desalination, Vol. 356 (2015) No. 0, p.187.

Google Scholar