Preparation and Tensile Property of Nanostructured Cu-Ag Alloy with Bimodal Grain Size Distribution

Article Preview

Abstract:

Nanostructured Cu-Ag alloys with bimodal grain size distribution were prepared and their tensile deformation behaviors were studied. The alloys were processed by hot isostatic pressing of blends of nanoand micrometer-sized powder particles. The microstructure of the alloys consisted of nanograins with an average grain size of 40 nm and coarse-grains with an average grain size of 30 um. The bimodal structured alloy exhibited high tensile strengths 522 MPa and a large plastic strain to failure approximately 30%. Simultaneously, Their tensile stress-strain curves displayed a long work-hardening region, and their tensile ductility increased with increasing coarse-grained volume fraction. The high strength primarily results from the contribution of nanograins, while the enhanced ductility may be attributed to the improved strain hardening capability by the presence of coarse grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-437

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Meyers, A. Mishra and D.J. Benson: Prog Mater Sci Vol. 51 (2003) No. 4, p.427.

Google Scholar

[2] S. Benkassem, L. Capolungo and M. Cherkaoui:. Acta Mater Vol. 55(2007) No. 10, p.3563.

Google Scholar

[3] C.C. Koch, D.G. Morris, K. Lu and A. Inoue: MRS Bull Vol. 24 (1999) No. 02, p.54.

Google Scholar

[4] K.S. Kumar, H.V. Swygenhoven and S. Suresh: Acta Mater Vol. 51 (2003) No. 19, p.5743.

Google Scholar

[5] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson and E. Ma: Acta Mater Vol. 55 (2007) No. 12, p.4041.

Google Scholar

[6] Z. H. Zhang, X. Yao, H. J. Zhu, S. D. Hua and Y. Chen: J. Cent South Univ T Vol. 16 (2009) No. 1, p.49.

Google Scholar

[7] A. A. Karimpoor, U. Erb, K. T. Aust and G. Palumbo: Scripta Mater Vol. 49 (2003) No. 7, p.651.

Google Scholar

[8] A. Ghosh, S. Sivaprasad, A. Bhattacharjee and K. S. Kar: Mater Sci Eng A Vol. 568 (2013), p.61.

Google Scholar

[9] K. M. Youssef, R. O. Scattergood, K. L. Murty and C. C. Koch: Appl Phys Lett Vol. 54 (2006) No. 2, p.251.

Google Scholar

[10] G. X. Cao, X. Chen, Z. H. Xu and X. D. Li: Compos Part B-ENG Vol. 41 (2010) No. 1, p.33.

Google Scholar

[11] X. Zhang, H. Wang and C. C. Koch: Rev Adv Mater Sci Vol. 6 (2004) No. 2, p.53.

Google Scholar

[12] B. Q. Han, E. J. Lavernia and F. A. Mohamed: Rev Adv Mater Sci Vol. 9 (2005) No. 1.

Google Scholar

[13] I. A. Ovid'ko: Rev Adv Mater Sci Vol. 10 (2005) No. 2, p.89.

Google Scholar

[14] A. Vinogradov, S. Hashimoto, V. Patlan and K. Kitagawa: Mater Sci Eng A Vol. 319-321 (2001), p.862.

Google Scholar

[15] Y. M. Wang, E. Ma and M. W. Chen: Appl Phys Lett Vol. 80 (2002) NO. 13, p.2395.

Google Scholar

[16] A. H. Chokshi and A. K. Mukherjee: Metall Trans A Vol. 19 (2002) No. 6, p.1621.

Google Scholar

[17] Y. G. Liu, J. Q. Zhou and D. Hui: Compos Part B Vol. 43(2012) No. 2, p.249.

Google Scholar

[18] X. Z. Liu, H. Luo, X. Su and Z. M. Yu: J Cent South U Vol. 22 (2015) No. 3, p.835.

Google Scholar

[19] Y. M. Wang, M. W. Chen, F. H. Zhou and E. Ma: Nature Vol. 419(2002) No. 6910, p.912.

Google Scholar

[20] K. Sitarama Raju, V. Subramanya Sarma, A. Kauffmann:. Scripta Mater Vol. 61 (2013) No. 1, p.228.

Google Scholar

[21] H. K. Wang, D. W. He, X .Z. Yan, C. Xu, J. W. Guan and N. Tan: High Pressure Res Vol. 31(2011) No. 4, p.581.

Google Scholar

[22] M. Krasnowski and T. Kulik: Intermetallics Vol. 15 (2007) No. 6, p.201.

Google Scholar

[23] M. Krasnowski and T. Kulik: Scripta Mater Vol. 57 (2007) No. 6, p.553.

Google Scholar

[24] M. Krasnowski and T. Kulik: Intermetallics Vol. 15(2007) No. 10, p.1377.

Google Scholar

[25] D. Witkin, Z. Lee, R. Rodriguez, S. Nutt and E. Lavernia: Scripta Mater Vol. 49 (2003) No. 4, p.297.

Google Scholar

[26] M. Jain and T. Christman: Acta Metallurgica et Materialia Vol. 42 (1994) No. 6, p. (1901).

Google Scholar

[27] J. E. Carsley, A. Fisher, W. W. Milligan and E. C. Aifantis: Metall Mater Trans A Vol. 29 (1998) No. 9, p.2261.

Google Scholar

[28] D. Jia, K. T. Ramesh and E. Ma: Acta Mater Vo. 51(2003) No. 12, p.3495.

Google Scholar

[29] S. L. Semiatin, K. V. Jata, M. D. Uchic, P. B. Berbon, D. E. Matejezyk and C. C. Bampton: Scripta Mater Vol. 44 (2001) No. 3, p.395.

DOI: 10.1016/s1359-6462(00)00612-6

Google Scholar

[30] B.Q. Han, E. J. Lavernia and F. A. Mohamed: Mater Sci Eng A Vol. 358 (2003) No. 1-2, p.318.

Google Scholar