Ultrasonic Effect on Fabrication of Intercalated MgAl-LDH/PVA Nanocomposites via Exfoliation-Adsorption Route

Article Preview

Abstract:

Glycine intercalated Mg/Al-layered double hydroxides (LDH-G)/PVA nanocomposites were prepared via exfoliation-adsorption route based on exfoliation of LDH-G in formamide. The effect of ultrasonic treatment on the fabrication of LDH-G/PVA nanocomposites was investigated. The results of XRD suggest that chains of PVA with double layer arrange into the galleries of restacking LDH platelets with the formation of intercalated-type nanocomposite. Experiments present that ultrasonic treatment on the colloid of LDH-G/PVA increases the amount of platelet which forms the intercalated phase, and improves the regularity of LDH-G arrays in the c direction. It is demonstrated the exfoliated LDH platelets orient in its normal paralleling the flow direction at the high shear rate induced by ultrasound. Simultaneously, under the enhanced temperature caused by long term of ultrasonic treatment, PVA chains extend more and the interaction between PVA chains and LDH layers is reinforced. A model was proposed for various stages of LDH platelets and PVA chains in their mixed colloid during ultrasonic treatment which describes the fabrication of improved hybrid structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-536

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman: Science Vol. 21 (2013) No. 6, p.340.

Google Scholar

[2] A. P. Jackson, J. F. V. Vincent and R. M. Turner: Composites Science and Technology Vol. 36 (1989) No. 3, p.255.

Google Scholar

[3] M. A. Priolo, K. M. Holder, T. Guin and J. C. Grunlan: Macromol. Rapid Commun. Vol. 36 (2015), p.866.

DOI: 10.1002/marc.201570041

Google Scholar

[4] S. S. Ray: Macromol. Chem. Phys. Vol. 215 (2014), p.1162.

Google Scholar

[5] S. Zhu, K. Han, S. Zhang, Z. Jiang, Qi. Huan, Y. Ma and M. Yu: Journal of Macromolecular Science Part B Vol. 53 (2014) No. 10, p.1601.

Google Scholar

[6] P. Das, J. Malho, K. Rahimi, F. H. Schacher, B. Wang, D. E. Demco and A. Walther: Nature Communications Vol. 6 (2015), p.6967.

Google Scholar

[7] E. Loizuo, L. Porcar, P. Schexnailder, G. Schmidt and P. Bulter: Macromolecules Vol. 43 (2010) No. 2, p.1041.

Google Scholar

[8] J.T. Han, J. I. Jang, H. Kim, J. Y. Hwang, H. K. Yoo, J. S. Woo, S. Choi, H. Y. Kim, H. J. Jeong, S. Y. Jeong, K. J. Baeg, K. Cho and G. W. Lee: Scientific Reports Vol. 30 (2014) No. 4, p.5133.

DOI: 10.1038/srep05133

Google Scholar

[9] W. Qiang and O'Hare Dermot: Chem. Rev. Vol. 112 (2012), p.4124.

Google Scholar

[10] F. R. Costa, M. Saphiannikova, U. Wagenknecht and G. Heinrich: Adv Polym Sci, Vol. 210 (2008), p.101.

Google Scholar

[11] D. J. Greenland: Journal of colloid Science Vol. 18 (1963), p.647.

Google Scholar

[12] D. Yang and R. F. Frindt: J. Mater. Res. Vol. 11 (1996) No. 7, p.1733.

Google Scholar

[13] G. Schmidt, A. I. Nakatani and C. C. Han: Rheol. Acta Vol. 41 (2002), p.45.

Google Scholar

[14] S. Lin-Gibson, H. Kim, G. Schmidt, C. C. Han and E. K. Hobbie: Journal of Colloid and interface Science Vol. 274 (2004), p.515.

Google Scholar