Network Connectivity in Icosahedra Medium-Range Order of Metallic Mg70Zn30 Alloy

Article Preview

Abstract:

The molecular dynamics simulations with embedded atom model (EAM) potential had performed to investigate the icosahedral network connectivity in Mg70Zn30 alloy. The microstructure was detected with a new precise method of largest standard cluster analysis. It was validated that the EAM potential is succeed in reflecting the objective physical nature of Mg-Zn alloy systems. Results shows that large amount of nanoclusters consist of ICOIs, which shows large connectivity variations, formed in the system with decreasing temperature. And the ICOIs connect over extended range act as backbone for a networked structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

801-805

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterial, Vol. 27 (2006), p.1728.

Google Scholar

[2] J.K. Christie, Phys Chem Chem Phys, Vol. 17 (2015), p.12894.

Google Scholar

[3] R. Babilas, K. Cesarz-Andraczke, D. Babilas, W. Simka, Journal of Materials Engineering and Performance, Vol. 24 (2014) , p.167.

DOI: 10.1007/s11665-014-1308-x

Google Scholar

[4] M. Lee, C. -M. Lee, K. -R. Lee, E. Ma, J. -C. Lee, Acta Materialia, Vol. 59 (2011), p.159.

Google Scholar

[5] C.C. Wang, C.H. Wong, Scripta Materialia, Vol. 66 (2012) , p.610.

Google Scholar

[6] R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, L. Yang, Physical Review B, Vol. 87 (2013) , p.184203.

Google Scholar

[7] Z.A. Tian, R.S. Liu, K.J. Dong, A.B. Yu, EPL, Vol. 96 (2011) , p.36001.

Google Scholar

[8] Z.A. Tian, K.J. Dong, A.B. Yu, AIP Conference Proceedings, Vol. 1542 (2013) , p.373.

Google Scholar

[9] Z.A. Tian, L.L. Zhou, Y.F. Mo, Y.C. Liang, R.S. Liu, Trans. Nonferrous Met. Soc. China, Vol. 25 (2015) , p.4072.

Google Scholar

[10] S. Plimpton, J. Comput. Phys, Vol. 117 (1995) , p.1.

Google Scholar

[11] H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Phys. Rev. B., Vol. 83 (2011) , p.134118.

Google Scholar

[12] S. Melchionna, G. Ciccotti, B. Lee Holian, Molecular Physics, Vol. 78 (1993) , p.533.

Google Scholar

[13] H. Rudin, S. Jost, H.J. Güntherodt, J Non-Cryst Solids, Vol. 61–62, Part 1 (1984) , p.291.

Google Scholar

[14] K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B., Vol. 54 (1996) , p.15808.

Google Scholar

[15] R.S. Liu, K.J. Dong, Z.A. Tian, H.R. Liu, P. Peng, A.B. Yu., J. Phys.: Condens. Matter., Vol. 19 (2007) , p.196103.

Google Scholar

[16] A.S. Clarke, H. Jónsson, Physical Review E, Vol. 47 (1993) , p.3975.

Google Scholar

[17] H. Jónsson, H.C. Andersen, Physical Review Letters, Vol. 60 (1988) , p.2295.

Google Scholar

[18] Y.Q. Cheng, E. Ma, Progress in Materials Science, Vol. 56 (2011) , p.379.

Google Scholar