[29]
Thus, it is considered that the loaded CuO on ZnO/SiNWs can promote the transfer of electrons in ZnO/SiNWs conduction band to outer oxygen, in the meanwhile it degrades the R6G. In other words, transfer of electrons from CuO to ZnO/SiNWs is possible due to work function of CuO being similar to that of ZnO.
DOI: 10.4028/www.scientific.net/kem.727.847
Google Scholar
[30]
To better enhance the decomposition rate, experiments were performed with external electron acceptors, such as H2O2 , and the observed rate constants are in the following H2O2 (k = 3. 9×10−2 min−1) (experimental conditions are as follows: Dye [1×10−5 M]; and H2O2 [1×10−5 M] (Fig. 4(c). The reason for such enhanced rate constant is due to the generation of enhanced number of surface active radicals by reaction between electron acceptors and CuO/ZnO/SiNWs. Conclusion Doping of copper on ZnO surface has been successfully conducted through wet impregnation method for the improvement of photocatalytic degradation of R6G. As prepared CuO-ZnO-SiNWs exhibits notably high photocatalytic activity in decomposing R6G under visible light irradiation. This may be due to the role of loaded metal in trapping and subsequent transfer of photoexcited electrons. Also through various characterization studies, it is identified that Cu in the as prepared nanocomposites belongs to CuO phase only. Acknowledgements Financial support of this work from the National Natural Science Foundation of China (Grant No. 51504117), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20135314110001), Research Project Fund of Yunnan Province Collaborative Innovation Center of Complex Nonferrous Metal Resources Comprehensive Utilization (Grant No. 2014XTZS009) and Open Project of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization (Grant No. CNMRCUKF1404). Refernces.
Google Scholar
[1]
N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol., A 162 (2004)317-322.
Google Scholar
[2]
V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, Sep. Sci. Technol. 46(5)(2011) 839-846.
Google Scholar
[3]
I. Ali, V.K. Gupta, Nat. Protoc. 1 (6) (2007) 2661-2667.
Google Scholar
[4]
V.K. Gupta, R. Jain, S. Agarwal, M. Shrivastava, Colloids Surf., A 378 (2011) 22-26.
Google Scholar
[5]
A. Akyol, H.C. Yatmaz, M. Bayramoglu, Appl. Catal., B 54 (2004) 19-24.
Google Scholar
[6]
V.K. Gupta, Suhas, J. Environ. Manage. 90 (2009) 2313-2342.
Google Scholar
[7]
V.K. Gupta, A. Mittal,M. Mathur, S. Sikarwar, J. Colloid Interface Sci. 309(2) (2007)460-465.
Google Scholar
[8]
V.K. Gupta, I. Ali, V.K. Saini, Ind. Eng. Chem. Res. 43 (2004) 1740-1747.
Google Scholar
[9]
V.K. Gupta, I. Ali, H.Y. Aboul-Enein, Curr. Sci. 84 (2) (2003) 152-156.
Google Scholar
[10]
C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Catal. Today 76 (2002) 235-246.
Google Scholar
[11]
M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. 133 (2006)226-232.
Google Scholar
[12]
A.A. Khodja J.F. Pilichowski, P. Boule, J. Photochem. Photobiol., A 141(2001)231-239.
Google Scholar
[13]
B. Dindar, S. Icil, J. Photochem. Photobiol., A 140 (2001) 263-268.
Google Scholar
[14]
C. Shifu, Z. Wei, Z. Sujuan, L. Wei, Chem. Eng. J. 148 (2009) 263-269.
Google Scholar
[15]
K.G. Kanade, B.B. Kale S.J. Moon, H. Chang, Mater. Chem. Phys. 102 (2007) 98-104.
Google Scholar
[16]
W. Cun, Z. Jincai, W. Xinming, P.P. An, F. Jiamo, Appl. Catal., B 39 (2002) 269-279.
Google Scholar
[17]
K.R. Gopidas, M. Bohorquez, P.V. Kamat, J. Phys. Chem. 94 (1990) 6435-6440.
Google Scholar
[18]
M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, J. Phys. Chem. B 110 (2006)20211-20216.
Google Scholar
[19]
M. Xue, L. Huang, J.Q. Wang J.H. Zhu, Z.G. Zou, Nanotechnology19(2008) 185604.
Google Scholar
[20]
K. Zhou, R. Wang, B. Xu, Y. Li, Nanotechnology 17 (2006) 3939.
Google Scholar
[21]
X.P. Gao, J.L. Bao, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B108 - (2004) 5547-5551.
Google Scholar
[22]
S. Bennici, A. Gervasini, Appl. Catal., B 62 (2006) 336-344.
Google Scholar
[23]
S.C. Colak, S. Birdogan, E. Aral, G. Kilic, Int. J. Hydrogen Energy 34 (2009)5196-5200.
Google Scholar
[24]
S.T. Jun, G.M. Choi, J. Am. Ceram. Soc. 81 (3) (1998) 695-699.
Google Scholar
[25]
D. Zhang, Transition Met. Chem. 35 (2010) 689-694.
Google Scholar
[26]
R.C. Wang, H.Y. Lin, Appl. Phys. A 95 (2009) 813-818.
Google Scholar
[27]
A. Zaoui, M. Ferhat, R. Ahuja, Appl. Phys. Lett. 94 (2009) 102102.
Google Scholar
[28]
B.R. Tao, J. Zhang, L.J. Wan, Y.T. Wang, Sensors Actuators B Chem. 136 (2009) 144.
Google Scholar
[29]
A. Watcharenwong, W. Chanmanee C.R. Chandrasekhar, J. Electroanal. Chem. 612 (2008) 112.
Google Scholar
[30]
C. Yu, X. Zhang, J. Xu, D. Yu, J. Chin. Electr. Microsc. Soc. 27 (2008) 2.
Google Scholar