Synthesis of Aluminum-Doped TiO2 Nanotubes by Anodization Method

Article Preview

Abstract:

We report the synthesis of Al-doped TiO2 nanotubes (Al-TNT) by DC anodization method at 50 volts. The method is simple, cost effective, environmentally safe and the samples produced are of good quality. The electrolytesolution was composed of ethylene glycol (EG), ammonium fluoride (0.3% wt NH4F), deionized water (2% vol H2O) and varying molar masses of aluminum nitrate - Al (NO3)3. The samples were analyzed XRD before and after annealing at 450 °C for 2 hours. The surface morphology and the elemental analysis of the annealed samples were characterized by SEM and ED-XRF respectively. The results show that phase transformation only occur after annealing. And that the surface organization, uniformity and structure are influenced by the concentration of the dopant element.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-214

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. He, W. X. Que, Electrochemical behavior & Photocatalytic performance of nitrogen-doped TiO2 nanotubes arrays powders prepared by combining anodization with solve thermal process, Ceramics International. 39. (2013) 5545-5552.

DOI: 10.1016/j.ceramint.2012.12.068

Google Scholar

[2] M. M. Mohamad, Y. Ghayeb, Fabrication characterization and photoelectrochemical behavior of Fe-TiO2 nanotubes composite photoanodes for solar water splitting, Journal of Electroanalytical Chemistry. 751 (2015) 43-48.

DOI: 10.1016/j.jelechem.2015.05.035

Google Scholar

[3] Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, G. Zou, Synthesis and characterization of TiO2 nanotubes for humidity sensing, Applied Surface Science. 254 (2008) 5545-5547.

DOI: 10.1016/j.apsusc.2008.02.106

Google Scholar

[4] H. Park, W. R. Kim, W. Y. Choi, Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays, Solar Energy Materials & Solar Cells. 95 (2011) 184-189.

DOI: 10.1016/j.solmat.2010.02.017

Google Scholar

[5] L. Qin, Q. Chen, Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO2 nanotube arrays, Journal of Materials Science & Technology. 31 (2015) 1059-1064.

DOI: 10.1016/j.jmst.2015.07.012

Google Scholar

[6] S. Wantawee, P. Krongkitsiri, S. Tippawan, B. Samran, U. Tipparach, Synthesis and structure of titania nanotube for hydrogen generation, Advanced Material Research. 741 (2013) 84-89.

DOI: 10.4028/www.scientific.net/amr.741.84

Google Scholar

[7] E. N. Timah, R. Vongwatthaporn, N. Kodtharinand U. Tipparach, Photocatalytic Performance of Fe-doped TiO2 Nanotubes in DSSCs, Journal of Materials and Applied Energy. 3 (2014) 5-8.

Google Scholar

[8] K. N. Amponsah, V. Hornebecq, T. Djenizian, Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti-Sn thin films, Electrochimica Acta. 62 (2012) 192-198.

DOI: 10.1016/j.electacta.2011.12.021

Google Scholar

[9] J. Geng, D. Yang, J. Zhu, D. Chen, Z. Jiang, Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method, Materials Research Bulletin. 44 (2009) 146-150.

DOI: 10.1016/j.materresbull.2008.03.010

Google Scholar

[10] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media an electrochemical approach, Electrochim Acta. 45 (1999) 921-929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[11] M. Fatemeh, M. Mahmood, Double-layer TiO2 nanotube arrays by two-step anodization: Used in back and front-side illuminated dye-sensitized solar cells, Materials Science in Semiconductor Processing. 39 (2015) 255-264.

DOI: 10.1016/j.mssp.2015.04.048

Google Scholar

[12] H. Song, J. Shang, C. Suo, Fabrication of TiO2 nanotube arrays by Rectified Alternating Current Anodization, Journal of Materials Science & Technology. 31(1) (2015) 23-29.

DOI: 10.1016/j.jmst.2014.07.005

Google Scholar

[13] K. Siuzdak, M. Szkoda, A. L. Oleksiak, J. Karczewski, J. Ryl, Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity, Applied Surface Science. 357 (2015).

DOI: 10.1016/j.apsusc.2015.09.130

Google Scholar

[14] M. M. Momeni, Y. Ghayeb, Z. Ghonchegi, Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light composite photocatalyst, Ceremics International. 41 (2015) 8735-8741.

DOI: 10.1016/j.ceramint.2015.03.094

Google Scholar

[15] X. Fan, J. Wan, E. Liu, Y. Hu, H. Li, X. Hu, J. Fan, High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped TiO2 nanotube arrays, Ceremics International. 41(2015) 5107-5116.

DOI: 10.1016/j.ceramint.2014.12.083

Google Scholar

[16] L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity, Solar Energy Materials & Solar Cells. 93 (2009) 1875–1880.

DOI: 10.1016/j.solmat.2009.07.001

Google Scholar

[17] R. Camposeco, S. Castillo, J. Navarrete, N. Nava, Boosted surface acidity in TiO2 and TiO2-Al2O3 nanotubes as catalytic supports, Applied Surface Science. 356 (2015) 115-123.

DOI: 10.1016/j.apsusc.2015.08.026

Google Scholar

[18] J.Y. Lin, Y.T. Chou, Effects of rapid thermal annealing on the structural properties of TiO2 nanotubes, Applied Surface Science. 258 (2011) 530-534.

DOI: 10.1016/j.apsusc.2011.08.073

Google Scholar

[19] X. Chen, M. Schriver, T. Suen, S. S. Mao, Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization, Thin Solid Film. 515 (2007) 8511-8514.

DOI: 10.1016/j.tsf.2007.03.110

Google Scholar