[1]
H.B. Nicolli, J.M. Suriano, P. Gomez, Groundwater contamination with arsenic and other trace elements in an area of the pampa, province of Cordoba, Argentina, Environ Geol Water S. 14 (1989) 3-16.
DOI: 10.1007/bf01740581
Google Scholar
[2]
P.L. Smedley, D.G. Kinniburgh, Chapter 1. Source and behaviour of arsenic in natural waters, in: United Nations Synthesis Report on Arsenic in Drinking Water, World Health Organization, 2001, pp.1-60.
Google Scholar
[3]
R.K. Dhar, B.K. Biswas, G. Samanta, B.K. Mandal, D. Chakraborti, S. Roy, A. Jafar, A. Islam, G. Ara, S. Kabir, A.W. Khan, S.A. Ahmed, S.A. Hadi, Groundwater arsenic calamity in Bangladesh, Curr Sci. 73 (1997) 48-59.
Google Scholar
[4]
B.K. Mandal, T.R. Chowdhury, G. Samanta, G.K. Basu, P.P. Chowdhary, C.R. Chanda, Arsenic in groundwater in seven districts of West Bengal, India—the biggest arsenic calamity in the world, Curr Sci. 70 (1996) 976-986.
DOI: 10.1007/978-94-011-5864-0_9
Google Scholar
[5]
J. Yinlong, Progress on arsenic in China, in: M. Kabuto (Ed. ), Proceedings of the First International workshop on arsenic pollution of Drinking Water in South Asia and China, national Institute of Environmental Studies, R-166-201, Tokyo, Japan, 2001, pp.35-39.
Google Scholar
[6]
M. Berg, H.C. Tran, T.C. Nguyen, H.V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat, Environ Sci Technol. 35 (2001) 2621-2622.
DOI: 10.1021/es010027y
Google Scholar
[7]
M. Williams, F. Fordyce, A. Paijiiprapapon, P. Charoenchaisri, Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand, Environ. Geol. Water Sci. 27 (1996).
DOI: 10.1007/bf00770599
Google Scholar
[8]
V.K. Sharma, M. Sohn, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int. 35 (2009) 743-759.
DOI: 10.1016/j.envint.2009.01.005
Google Scholar
[9]
J. Wongsanoon, J. Laowlam, L. Wongsanoon, Y. Sounboon, Risk factors related to the consumption of arsenic from contaminated soil without the intent of the people in Dan Chang District Suphanburi Province, BU Academic Review, 10(2)(2011)81-95.
Google Scholar
[10]
D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents: A critical review, J. Hazard. Mater. 142 (2007) 1-53.
DOI: 10.1016/j.jhazmat.2007.01.006
Google Scholar
[11]
G.N. Mazumder, Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in West Bengal, J. Environ. Sci. Health, Part A–Toxic/Haz. Sub. Environ. Eng. 38 (2003) 141-163.
DOI: 10.1081/ese-120016886
Google Scholar
[12]
T.S.Y. Choong, T.G. Chuah, Y. Robiah, F.L. Gregory Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination. 217 (2007) 139-166.
DOI: 10.1016/j.desal.2007.01.015
Google Scholar
[13]
C.J. Chen, M.M. Wu, S.S. Lee, J.D. Wang, S.H. Cheng, H.Y. Wu, Atherogenicity and carcinogenicity of high-arsenic artesian well water, Arteriosclerosis. 8 (1988) 452-460.
DOI: 10.1161/01.atv.8.5.452
Google Scholar
[14]
A. Maiti, S. DasGupta, J.K. Basu, S. De, Adsorption of arsenite using natural laterite as adsorbent, Sep. Purif. Technol. 55 (2007) 350-359.
DOI: 10.1016/j.seppur.2007.01.003
Google Scholar
[15]
J. Pattanayak, K. Mondal, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents, Carbon. 38 (2000) 589-596.
DOI: 10.1016/s0008-6223(99)00144-x
Google Scholar
[16]
A. Goswami, P.K. Raul, M.K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des. 90 (2012) 1387-1396.
DOI: 10.1016/j.cherd.2011.12.006
Google Scholar
[17]
V. Lenoble, O. Bouras, V. Deluchat, B. Serpaud, J. -C. Bollinger, Arsenic Adsorption onto Pillared Clays and Iron Oxides, J. Colloid Interface Sci. 255 (2002) 52-58.
DOI: 10.1006/jcis.2002.8646
Google Scholar
[18]
A.C.Q. Ladeira, V. n.S.T. Ciminelli, Adsorption and desorption of arsenic on an oxisol and its constituents, Water Res. 38 (2004) 2087-(2094).
DOI: 10.1016/j.watres.2004.02.002
Google Scholar
[19]
D. Alidoust, M. Kawahigashi, S. Yoshizawa, H. Sumida, M. Watanabe, Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, J. Environ. Manage. 150 (2015) 103-110.
DOI: 10.1016/j.jenvman.2014.10.032
Google Scholar
[20]
G.L. Yoon, B.T. Kim, B.O. Kim, S.H. Han, Chemical-mechanical characteristics of crushed oyster-shell, Waste Manage. 23 (2003) 825-834.
DOI: 10.1016/s0956-053x(02)00159-9
Google Scholar
[21]
H.C. Tsai, S.L. Lo, J. Kuo, Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater, Bioresour. Technol. 102 (2011) 7802-7806.
DOI: 10.1016/j.biortech.2011.06.036
Google Scholar
[22]
T. Preocanin, N. Kallay, Application of >>Mass Titration <<to Determination of Surface Charge of Metal Oxides, CROATICA CHEMICA ACTA. 71 (1998) 1117-1125.
Google Scholar
[23]
A.M. Cardenas-Pena, J.G. Ibanez, R. Vasquez-Medrano, Determination of the Point of Zero Charge for Electrocoagulation Principites from an Iron Anode, Int. J. Electrochem. Sci. 7 (2012) 6142-6153.
DOI: 10.1016/s1452-3981(23)19469-7
Google Scholar
[24]
K.Y. Foo, B.H. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation, Chem. Eng. J. 187 (2012) 53-62.
DOI: 10.1016/j.cej.2012.01.079
Google Scholar
[25]
A.F. Hassan, A.M. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic by activated carbon, calcium alginate and their composite beads, Int. J. Biol. Macromol. 68 (2014) 125-130.
DOI: 10.1016/j.ijbiomac.2014.04.006
Google Scholar
[26]
K.C.M. Kwok, L.F. Koong, G. Chen, G. McKay, Mechanism of arsenic removal using chitosan and nanochitosan, J. Colloid Interface Sci. 416 (2014) 1-10.
DOI: 10.1016/j.jcis.2013.10.031
Google Scholar
[27]
H. QUI, L. LV, B. c. PAN, Q. j. ZHANG, W. m. ZHANG, Q. x. ZHANG, Critical review in adsorption kinetic models, J. Zhejiang Univ. -SCI. A. 10 (2009) 716-724.
DOI: 10.1631/jzus.a0820524
Google Scholar
[28]
Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water Res. 33 (1999) 578-584.
DOI: 10.1016/s0043-1354(98)00207-3
Google Scholar
[29]
S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakadimiens Hanlingar. 24 (1898) 1-39.
Google Scholar
[30]
M.A. Malana, R.B. Qureshi, M.N. Ashiq, Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism, Chem. Eng. J. 172 (2011) 721-727.
DOI: 10.1016/j.cej.2011.06.041
Google Scholar
[31]
Y.S. Ho, Review of second-order model for adsorption system, J. Hazard. Mater. 136 (2006) 681-689.
Google Scholar
[32]
Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.
DOI: 10.1016/s0032-9592(98)00112-5
Google Scholar
[33]
G. Atesok, P. Somasundaran, L.J. Morgan, Adsorption properties of Ca2+ on Na-kaolinite and its effect on flocculation using polyacrylamides, Colloids and Surfaces. 32 (1988) 127-138.
DOI: 10.1016/0166-6622(88)80009-x
Google Scholar
[34]
Y. Salameh, A.B. Albadarin, S. Allen, G. Walker, M.N.M. Ahmad, Arsenic(III, V) adsorption onto charred dolomite: Charring optimization and batch studies, Chem. Eng. J. 259 (2015) 663-671.
DOI: 10.1016/j.cej.2014.08.038
Google Scholar
[35]
G.N. Manju, C. Raji, T.S. Anirudhan, Evaluation of coconut husk carbon for the removal of arsenic from water, Water Res. 32 (1998) 3062-3070.
DOI: 10.1016/s0043-1354(98)00068-2
Google Scholar
[36]
V. Lenoble, C. Laclautre, V. Deluchat, B. Serpaud, J.C. Bollinger, Arsenic removal by adsorption on iron(III) phosphate, J. Hazard. Mater. 123 (2005) 262-268.
DOI: 10.1016/j.jhazmat.2005.04.005
Google Scholar