Arsenic Adsorption Using the Adsorbent Synthesised from Oyster Shell

Article Preview

Abstract:

Ground oyster shells were calcined and used as an adsorbent to remove As (III) from contaminated water. Adsorption experiment was performed by batch tests. The effect of pH on the adsorption performance was investigated. The result showed that at the initial concentration of 100 mg/L, over the pH range of 5-11, the highest efficiency was obtained at pH 11. The experimental data better correlated with pseudo-second order model. The maximum adsorption capacity (qm) of approximately 195.5 mg/g was obtained at pH 11.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-334

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.B. Nicolli, J.M. Suriano, P. Gomez, Groundwater contamination with arsenic and other trace elements in an area of the pampa, province of Cordoba, Argentina, Environ Geol Water S. 14 (1989) 3-16.

DOI: 10.1007/bf01740581

Google Scholar

[2] P.L. Smedley, D.G. Kinniburgh, Chapter 1. Source and behaviour of arsenic in natural waters, in: United Nations Synthesis Report on Arsenic in Drinking Water, World Health Organization, 2001, pp.1-60.

Google Scholar

[3] R.K. Dhar, B.K. Biswas, G. Samanta, B.K. Mandal, D. Chakraborti, S. Roy, A. Jafar, A. Islam, G. Ara, S. Kabir, A.W. Khan, S.A. Ahmed, S.A. Hadi, Groundwater arsenic calamity in Bangladesh, Curr Sci. 73 (1997) 48-59.

Google Scholar

[4] B.K. Mandal, T.R. Chowdhury, G. Samanta, G.K. Basu, P.P. Chowdhary, C.R. Chanda, Arsenic in groundwater in seven districts of West Bengal, India—the biggest arsenic calamity in the world, Curr Sci. 70 (1996) 976-986.

DOI: 10.1007/978-94-011-5864-0_9

Google Scholar

[5] J. Yinlong, Progress on arsenic in China, in: M. Kabuto (Ed. ), Proceedings of the First International workshop on arsenic pollution of Drinking Water in South Asia and China, national Institute of Environmental Studies, R-166-201, Tokyo, Japan, 2001, pp.35-39.

Google Scholar

[6] M. Berg, H.C. Tran, T.C. Nguyen, H.V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat, Environ Sci Technol. 35 (2001) 2621-2622.

DOI: 10.1021/es010027y

Google Scholar

[7] M. Williams, F. Fordyce, A. Paijiiprapapon, P. Charoenchaisri, Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand, Environ. Geol. Water Sci. 27 (1996).

DOI: 10.1007/bf00770599

Google Scholar

[8] V.K. Sharma, M. Sohn, Aquatic arsenic: Toxicity, speciation, transformations, and remediation, Environ. Int. 35 (2009) 743-759.

DOI: 10.1016/j.envint.2009.01.005

Google Scholar

[9] J. Wongsanoon, J. Laowlam, L. Wongsanoon, Y. Sounboon, Risk factors related to the consumption of arsenic from contaminated soil without the intent of the people in Dan Chang District Suphanburi Province, BU Academic Review, 10(2)(2011)81-95.

Google Scholar

[10] D. Mohan, C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents: A critical review, J. Hazard. Mater. 142 (2007) 1-53.

DOI: 10.1016/j.jhazmat.2007.01.006

Google Scholar

[11] G.N. Mazumder, Chronic arsenic toxicity: clinical features, epidemiology, and treatment: experience in West Bengal, J. Environ. Sci. Health, Part A–Toxic/Haz. Sub. Environ. Eng. 38 (2003) 141-163.

DOI: 10.1081/ese-120016886

Google Scholar

[12] T.S.Y. Choong, T.G. Chuah, Y. Robiah, F.L. Gregory Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination. 217 (2007) 139-166.

DOI: 10.1016/j.desal.2007.01.015

Google Scholar

[13] C.J. Chen, M.M. Wu, S.S. Lee, J.D. Wang, S.H. Cheng, H.Y. Wu, Atherogenicity and carcinogenicity of high-arsenic artesian well water, Arteriosclerosis. 8 (1988) 452-460.

DOI: 10.1161/01.atv.8.5.452

Google Scholar

[14] A. Maiti, S. DasGupta, J.K. Basu, S. De, Adsorption of arsenite using natural laterite as adsorbent, Sep. Purif. Technol. 55 (2007) 350-359.

DOI: 10.1016/j.seppur.2007.01.003

Google Scholar

[15] J. Pattanayak, K. Mondal, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents, Carbon. 38 (2000) 589-596.

DOI: 10.1016/s0008-6223(99)00144-x

Google Scholar

[16] A. Goswami, P.K. Raul, M.K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des. 90 (2012) 1387-1396.

DOI: 10.1016/j.cherd.2011.12.006

Google Scholar

[17] V. Lenoble, O. Bouras, V. Deluchat, B. Serpaud, J. -C. Bollinger, Arsenic Adsorption onto Pillared Clays and Iron Oxides, J. Colloid Interface Sci. 255 (2002) 52-58.

DOI: 10.1006/jcis.2002.8646

Google Scholar

[18] A.C.Q. Ladeira, V. n.S.T. Ciminelli, Adsorption and desorption of arsenic on an oxisol and its constituents, Water Res. 38 (2004) 2087-(2094).

DOI: 10.1016/j.watres.2004.02.002

Google Scholar

[19] D. Alidoust, M. Kawahigashi, S. Yoshizawa, H. Sumida, M. Watanabe, Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells, J. Environ. Manage. 150 (2015) 103-110.

DOI: 10.1016/j.jenvman.2014.10.032

Google Scholar

[20] G.L. Yoon, B.T. Kim, B.O. Kim, S.H. Han, Chemical-mechanical characteristics of crushed oyster-shell, Waste Manage. 23 (2003) 825-834.

DOI: 10.1016/s0956-053x(02)00159-9

Google Scholar

[21] H.C. Tsai, S.L. Lo, J. Kuo, Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater, Bioresour. Technol. 102 (2011) 7802-7806.

DOI: 10.1016/j.biortech.2011.06.036

Google Scholar

[22] T. Preocanin, N. Kallay, Application of >>Mass Titration <<to Determination of Surface Charge of Metal Oxides, CROATICA CHEMICA ACTA. 71 (1998) 1117-1125.

Google Scholar

[23] A.M. Cardenas-Pena, J.G. Ibanez, R. Vasquez-Medrano, Determination of the Point of Zero Charge for Electrocoagulation Principites from an Iron Anode, Int. J. Electrochem. Sci. 7 (2012) 6142-6153.

DOI: 10.1016/s1452-3981(23)19469-7

Google Scholar

[24] K.Y. Foo, B.H. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation, Chem. Eng. J. 187 (2012) 53-62.

DOI: 10.1016/j.cej.2012.01.079

Google Scholar

[25] A.F. Hassan, A.M. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic by activated carbon, calcium alginate and their composite beads, Int. J. Biol. Macromol. 68 (2014) 125-130.

DOI: 10.1016/j.ijbiomac.2014.04.006

Google Scholar

[26] K.C.M. Kwok, L.F. Koong, G. Chen, G. McKay, Mechanism of arsenic removal using chitosan and nanochitosan, J. Colloid Interface Sci. 416 (2014) 1-10.

DOI: 10.1016/j.jcis.2013.10.031

Google Scholar

[27] H. QUI, L. LV, B. c. PAN, Q. j. ZHANG, W. m. ZHANG, Q. x. ZHANG, Critical review in adsorption kinetic models, J. Zhejiang Univ. -SCI. A. 10 (2009) 716-724.

DOI: 10.1631/jzus.a0820524

Google Scholar

[28] Y.S. Ho, G. McKay, The sorption of lead(II) ions on peat, Water Res. 33 (1999) 578-584.

DOI: 10.1016/s0043-1354(98)00207-3

Google Scholar

[29] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakadimiens Hanlingar. 24 (1898) 1-39.

Google Scholar

[30] M.A. Malana, R.B. Qureshi, M.N. Ashiq, Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism, Chem. Eng. J. 172 (2011) 721-727.

DOI: 10.1016/j.cej.2011.06.041

Google Scholar

[31] Y.S. Ho, Review of second-order model for adsorption system, J. Hazard. Mater. 136 (2006) 681-689.

Google Scholar

[32] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[33] G. Atesok, P. Somasundaran, L.J. Morgan, Adsorption properties of Ca2+ on Na-kaolinite and its effect on flocculation using polyacrylamides, Colloids and Surfaces. 32 (1988) 127-138.

DOI: 10.1016/0166-6622(88)80009-x

Google Scholar

[34] Y. Salameh, A.B. Albadarin, S. Allen, G. Walker, M.N.M. Ahmad, Arsenic(III, V) adsorption onto charred dolomite: Charring optimization and batch studies, Chem. Eng. J. 259 (2015) 663-671.

DOI: 10.1016/j.cej.2014.08.038

Google Scholar

[35] G.N. Manju, C. Raji, T.S. Anirudhan, Evaluation of coconut husk carbon for the removal of arsenic from water, Water Res. 32 (1998) 3062-3070.

DOI: 10.1016/s0043-1354(98)00068-2

Google Scholar

[36] V. Lenoble, C. Laclautre, V. Deluchat, B. Serpaud, J.C. Bollinger, Arsenic removal by adsorption on iron(III) phosphate, J. Hazard. Mater. 123 (2005) 262-268.

DOI: 10.1016/j.jhazmat.2005.04.005

Google Scholar