[1]
R. C. Reed, The Superalloys Fundamentals and Applications, edited by Cambridge University Press, Cambridge (2006), p.1, 353-357, 283-297, 217-219, 232, 238-256, 353-357.
Google Scholar
[2]
B. Geddes, H. Leon, X. Huang, Superalloys Alloying and Performance, edited by ASM International Press, Ohio (2010), pp.28-35.
Google Scholar
[3]
M. D. Charre, Heating resisting steels and iron: Microstructure of Steels and Cast Irons containing superalloys, edited by Springer-Verlag Berlin Heidelberg, NewYork (2007), pp.331-346.
DOI: 10.1007/978-3-662-08729-9_20
Google Scholar
[4]
F. X. Ye, H. Fujii, T. Tsumura, K. Nakata, Friction stir welding of Inconel 600, J. Mater. Sci. 41 (2006) 5376-5379.
DOI: 10.1007/s10853-006-0169-6
Google Scholar
[5]
Y. S. Sato, P. Arkorn, H. Kokawa, T. W. Nelson, R. J. Steel, Effect of microstructure on properties of friction stir welded Inconel alloy 600, Mater. Sci. Eng. A. 477 (2008) 250-258.
DOI: 10.1016/j.msea.2007.07.002
Google Scholar
[6]
K. H. Song, Y. D. Chung, K. Nakata, Investigation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Monel 400 and Inconel 600, J. Metall. Inter., 19 (2013) 571-576.
DOI: 10.1007/s12540-013-3027-5
Google Scholar
[7]
T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, M. C. Gupta, Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications, J. Opt. Laser. Eng. 51 (2013) 180-184.
DOI: 10.1016/j.optlaseng.2012.08.006
Google Scholar
[8]
M. Kulka, P. Dziarski, N. Makuch, A. Piasecki, A. Miklaszewski, Microstructure and properties of laser-borided Inconel 600 alloy, J. Appl. Surf. Sci. 284 (2013) 757-771.
DOI: 10.1016/j.apsusc.2013.07.167
Google Scholar
[9]
K. H. Song, H. Fuji, K. Nakata, Effect of welding speed on microstructural and mechanical properties, J. Mater. Des. 30 (2009) 3972-3978.
Google Scholar
[10]
C. Sudha, R. Anand, V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Nitriding Kinetics of Inconel 600, J. Surf. Sci. Tech. 226 (2013) 92-99.
DOI: 10.1016/j.surfcoat.2013.03.040
Google Scholar
[11]
F. Mindivan, H. Mindivan, Comparison of Wear Performance of Hardened Inconel 600 by different Nitriding Process, J. Proc. Eng. 68 (2013) 730-735.
DOI: 10.1016/j.proeng.2013.12.246
Google Scholar
[12]
C. B. In, Y. I. Kim, W. W. Kim, J. S. Kim, S. S. Chun, W. J. Lee, Pitting resistance and mechanism of TiN-coated Inconel 600 in 100℃ NaCl solution, J. Nucl. Mater. 224 (1995) 71-78.
DOI: 10.1016/0022-3115(95)00033-x
Google Scholar
[13]
C. B. In, Y. I. Kim, W. W. Kim, J. S. Kim, S. S. Chun, W. J. Lee, Pitting resistance of TiN deposited on Inconel 600 by plasma-assisted chemical vapor deposition, J. Nucl. Mater. 211 (1994) 223-230.
DOI: 10.1016/0022-3115(94)90350-6
Google Scholar
[14]
H. X. Hu, Y. G. Zheng, C. P. Qin. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion. Nucl. Eng. Des. 240 (2010) 2721-2730.
DOI: 10.1016/j.nucengdes.2010.07.021
Google Scholar
[15]
T. Zaharinie, R. Moshwan, F. Yusof, M. Hamdi, T. Ariga, Vacuum brazing of sapphire with Inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application, J. Mater. Des. 54 (2014) 375-381.
DOI: 10.1016/j.matdes.2013.08.046
Google Scholar
[16]
N. Afzal, K. M. Deen, R. Ahunrad, Z. Niazi, A. Farooq, M. Rafique, Y. S. Kim, M. Khaleeq-ur-Rahman, Improvement in the pitting resistance of Inconel 600 by Nitrogen Ions Implantation, J. Protect. Phys. Chem. Surf. 51(3) (2015) 481-485.
DOI: 10.1134/s207020511503003x
Google Scholar
[17]
J. B. Ferguson, H. F. Lopez, Oxidation Products of Inconel alloys 600 and 690 in Pressurized Water Reactor Environments and Their role in Intergrannular Stress Corrosion Cracking, J. Metall. Trans. A, 37A (2005) 2471-2479.
DOI: 10.1007/bf02586220
Google Scholar
[18]
Q. J. Peng, J. Hou, K. Sakaguchi, T. Takeda, T. Shoji, Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water, J. Electrochim. Acta, 56 (2011) 8375-8386.
DOI: 10.1016/j.electacta.2011.07.032
Google Scholar
[19]
J. Hou, Q. J. Peng, K. Sakaguchi, Y. Takeda, J. Kuniya, T. Shoji, Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water, J. Corros. Sci., 52 (2010) 1098-1101.
DOI: 10.1016/j.corsci.2009.11.037
Google Scholar
[20]
J. D. Kwon, D. K. Park, S. W. Woo, D. H. Yoon, I. S. Chuang, A study on fretting fatigue life for the Inconel 600 alloy at high temperature, J. Nucl. Engi. Des. 240 (2010) 2521-2527.
DOI: 10.1016/j.nucengdes.2010.05.013
Google Scholar
[21]
J. Li, M. Mo, Y. H. Lu, L. Xin, Evolution of wear damage in Inconel 600 alloy due to fretting against type 304 stainless steel, Wear, 346-347 (2016) 15-21.
DOI: 10.1016/j.wear.2015.10.011
Google Scholar
[22]
H. Y. Zhang, Y. H. Lu, M. Ma, J. Li, Effects of precipitated carbides on the fretting wear behavior of Inconel 600 alloy, Wear, 315 (2014) 58-67.
DOI: 10.1016/j.wear.2014.03.012
Google Scholar
[23]
T. H. Kim, S. S. Kim, Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air, Inter. J. KSME, 15(9) (2010) 1274-1280.
DOI: 10.1007/bf03185668
Google Scholar