[1]
H. J. Cheng, Master's Thesis, Lubrication Properties of Biolubricants from Rice Straw and Coffee Dregs, Advisor: J. H. Horng, National Formosa University, Taiwan (2012).
Google Scholar
[2]
N. Chand, P. Sharma, and M. Fahim, Tribology of maleic anhydride modified rice-husk filled polyvinylchloride, Wear, Vol. 269 (2010), pp.847-853.
DOI: 10.1016/j.wear.2010.08.014
Google Scholar
[3]
N. Chand, M. Fahim, P. Sharma and M.N. Bapa, Influence of foaming agent on wear and mechanical properties of surface modified rice husk filled polyvinylchloride, Wear, Vols. 278-279 (2012), pp.83-86.
DOI: 10.1016/j.wear.2012.01.002
Google Scholar
[4]
K. Li, D. Xiang and X. Lei, Green and self-lubricating polyoxymethylene composites filled with low-density polyethylene and rice husk flour, Applied Polymer, Vol. 108, Iss. 5 (2008), pp.2778-2786.
DOI: 10.1002/app.27603
Google Scholar
[5]
M. Fijalkowski, K. Adach and D. Kroisová, Physico-mechanical properties of epoxy resin filled with rice husk particles, NANOCON 2015 Proceedings, Oct. 14th-16th, Brno, Czech Republic, EU (2015).
Google Scholar
[6]
K. Debnath, V. Dhawan, I. Singh and A. Dvivedi, Adhesive wear and frictional behavior of rice husk filled glass/epoxy composites, Journal of Production Engineering, Vol. 17, No. 1 (2014), pp.21-26.
Google Scholar
[7]
S. Majhi, S. P. Samantarai and S. K. Acharya, Tribological behavior of modified rice husk filled epoxy composite, International Journal of Scientific & Engineering Research, Vol. 3, Iss. 6 (2012), pp.1-6.
Google Scholar
[8]
A.K. Rout and A. Satapathy, Analysis of dry sliding wear behaviour of rice husk filled epoxy composites using design of experiment and ANN, Procedia Engineering, Vol. 38 (2012), pp.1218-1232.
DOI: 10.1016/j.proeng.2012.06.153
Google Scholar
[9]
A. K. Rout and A. Satapathy, Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites, Materials & Design, Vol. 41 (2012), pp.131-141.
DOI: 10.1016/j.matdes.2012.05.002
Google Scholar
[10]
F. U. Ozioko, Effect of carbonization temperature on wear rate behaviour of rice husk ash reinforced epoxy composites, Leonardo Electronic Journal of Practices and Technologies, Iss. 19 (2011), pp.172-182.
Google Scholar
[11]
T. Dugarjav, T. Yamaguchi, S. Katakura and K. Hokkirigawa, The effect of carbonizing temperature on friction and wear properties of hard porous carbon materials made from rice husk, Tribology Online, Vol. 4, ) No. 1 (2009), pp.11-16.
DOI: 10.2474/trol.4.11
Google Scholar
[12]
T. Dugarjav, T. Yamaguchi, K. Shibata and K. Hokkirigawa, Friction and Wear Properties of Rice Husk Ceramics under Dry and Water Lubricated Conditions, Tribology Online, Vol. 4, No. 4 (2009), pp.78-81.
DOI: 10.2474/trol.4.78
Google Scholar
[13]
T. Dugarjav, T. Yamaguchi, K. Shibata and K. Hokkirigawa, Friction and wear properties of rice husk ceramics under dry condition, Journal of Mechanical Science and Technology, Vol. 24 (2010), pp.85-88.
DOI: 10.1007/s12206-009-1167-9
Google Scholar
[14]
K. Shibata, T. Yamaguchi and K. Hokkirigawa, Tribological behavior of RH ceramics made from rice husk sliding against stainless steel, alumina, silicon carbide, and silicon nitride, Tribology International, Vol. 73 (2014), pp.187-194.
DOI: 10.1016/j.triboint.2014.01.021
Google Scholar
[15]
S. D. Saravanan, M. Senthilkumar and S. Shankar, Effect of Particle Size on Tribological Behavior of Rice Husk Ash–Reinforced Aluminum Alloy (AlSi10Mg) Matrix Composites, Vol. 56, Iss. 6 (2013), pp.1156-1167.
DOI: 10.1080/10402004.2013.831962
Google Scholar
[16]
M. Senthilkumar, S. D. Saravanan and S. Shankar, Dry sliding wear and friction behavior of aluminum–rice husk ash composite using Taguchi's technique, Journal of Composite Materials, Vol. 49 No. 18 (2015), pp.2241-2250.
DOI: 10.1177/0021998314545185
Google Scholar
[17]
S. D. Saravanan and M. Senthilkumar, Prediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural network, Refractory, Ceramic, and Composite Materials - Russian Journal of Non-Ferrous Metals, Vol. 56, Iss. 1 (2015).
DOI: 10.3103/s1067821215010174
Google Scholar
[18]
K. K. Alaneme and P. A. Olubambi, Corrosion and wear behaviour of rice husk ash—Alumina reinforced Al–Mg–Si alloy matrix hybrid composites, Journal of Materials Research and Technology, Vol. 2, Iss. 2 (2013), pp.188-194.
DOI: 10.1016/j.jmrt.2013.02.005
Google Scholar
[19]
I. Mutlu, Investigation of Tribological Properties of Brake Pads by Using Rice Straw and Rice Husk Dus, Journal of Applied Sciences, Vol. 9 (2) (2009), pp.377-381.
DOI: 10.3923/jas.2009.377.381
Google Scholar