Physiochemical Properties and Fatty Acids Profiles of Oil from Musa Aluminata balbisiana

Article Preview

Abstract:

Banana peel wastes of Musa Aluminata balbisiana (MBS) which known as a waste, and often ignored was collected and subjected to approximate composition study. The study revealed that the peel contained 78.58% of moisture content and 0.57% of volatile content. Oil extraction of MBS was performed using soxhlet method was yielded a pale brownish oil at room temperature with extraction recovery of 62.42%. The oil was exhibited a density, specific gravity, refractive index and viscosity of 08502 kg/m3, 0.8536 kg/m3, 1.47 and 3.29 cSt respectively. Physiochemical analysis shows that, the oil contained 2.64 of free fatty acids (FFAs), 0.77 g I2/100 g of oil Iodine values (IV), 7.46 mgKOH/g of saponification value (SV), 0.52 mgKOH/g of total acid number (TAN). Fatty acids analysis showed that, the oil composed of 46% of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and 4% of polyunsaturated fatty acids (PUFAs). The fatty acids analysis exhibit a desirable properties to further developed as a lubricants or as a lubricant additives due to ability to provides surface protective film in tribological behavioral due to the higher percentages of SFAs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-189

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Salimon, N. Salih, and B. M. Abdullah, Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil, J. Biomed. Biotechnol., vol. 2011, (2011).

DOI: 10.1155/2011/196565

Google Scholar

[2] A. Adhvaryu, S. Z. Erhan, and J. M. Perez, Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants, Wear, vol. 257, no. 3–4, p.359–367, (2004).

DOI: 10.1016/j.wear.2004.01.005

Google Scholar

[3] M. Shahabuddin, H. H. Masjuki, and M. A. Kalam, Experimental investigation into tribological characteristics of biolubricant formulated from Jatropha oil, in Procedia Engineering vol. 56, p.597–606, (2013).

DOI: 10.1016/j.proeng.2013.03.165

Google Scholar

[4] M. Shahabuddin, H. H. Masjuki, M. A. Kalam, M. M. K. Bhuiya, and H. Mehat, Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil), Ind. Crop. Prod., vol. 47, p.323–330, (2013).

DOI: 10.1016/j.indcrop.2013.03.026

Google Scholar

[5] N. Salih, J. Salimon, and E. Yousif, The physicochemical and tribological properties of oleic acid based triester biolubricants, Ind. Crop. Prod., vol. 34, no. 1, p.1089–1096, (2011).

DOI: 10.1016/j.indcrop.2011.03.025

Google Scholar

[6] Akinyosoye, Tropical Agriculture. Macmillan Publisher Limited, Ibadan, (1991).

Google Scholar

[7] J. S. Waghmare and A. H. Kurhade, GC-MS analysis of bioactive components from banana peel (Musa sapientum peel ) Pelagia Research Library, vol. 4, no. 5, p.10–15, (2014).

Google Scholar

[8] K. Mabuchi, K. Tanaka, D. Uchijima, and R. Sakai, Frictional Coefficient under Banana Skin, vol. 3, p.147–151, (2012).

DOI: 10.2474/trol.7.147

Google Scholar

[9] H.A. Hamid, N.A.B. Masripan, J. BAsiron, M.M.B. Mustafa, R. Hasan, M.F. B Abdollah and R. Ismail, Effect of Banana Peels as an Additive on the Tribological Proporties of Paraffin Oil, vol. 21, p.73–77, (2015).

DOI: 10.11113/jt.v77.6610

Google Scholar

[10] F. U. Ozioko, Extraction and Characterization of Soybean Oil Based Bio-Lubricant, vol. 15, no. 4, p.260–264, (2012).

Google Scholar

[11] S. Sayyar, Z. Z. Abidin, R. Yunus, and A. Muhammad, Extraction of Oil from Jatropha Seeds-Optimization and Kinetics, vol. 6, no. 7, p.1390–1395, (2009).

DOI: 10.3844/ajassp.2009.1390.1395

Google Scholar

[12] M. Bwai, MD, Adedirin, O., Akanji, F. T, Muhammad, K. J, Idoko, O. and Useh, International Journal of Research in Pharmacy and Science Physicochemical Properties , Fatty Acids Profiles and Antioxidant Properties of Seed Oil of Breadfruit (Treculia africana)., vol. 3, no. 08065962233, p.44–54, (2013).

Google Scholar

[13] A. Gohari Ardabili, R. Farhoosh, and M. H. Haddad Khodaparast, Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo subsp. pepo Var. styriaka) grown in Iran, J. Agric. Sci. Technol., vol. 13, no. SUPPL., p.1053–1063, (2011).

Google Scholar

[14] T. S. T. Mansor, Y. B. Che Man, M. Shuhaimi, M. J. Abdul Afiq, and F. K. M. Ku Nurul, Physicochemical properties of virgin coconut oil extracted from different processing methods, Int. Food Res. J., vol. 19, no. 3, p.837–845, (2012).

Google Scholar

[15] A. K. M. A. Islam, Z. Yaakob, N. Anuar, S. R. P. Primandari, and M. Osman, Physiochemical Properties of Jatropha curcas Seed Oil from Different Origins and Candidate Plus Plants (CPPs), p.293–300, (2012).

DOI: 10.1007/s11746-011-1908-7

Google Scholar

[16] B. M. Abdullah, R. M. Yusop, J. Salimon, E. Yousif, and N. Salih, Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications, vol. 7, no. 12, p.893–896, (2013).

Google Scholar

[17] B. M. Abdullah, R. M. Yusop, J. Salimon, E. Yousif, and N. Salih, Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications, vol. 7, no. 12, p.536–539, (2013).

Google Scholar

[18] M. O. Bello, T. L. Akindele, D. O. Adeoye, A. O. Oladimeji, A. Chemistry, and G. Sciences, Physicochemical Properties and Fatty Acids Profile of Seed Oil of Telfairia, no. December, p.9–14, (2011).

Google Scholar

[19] I. Igwenyi, Comparative Study of the Physicochemical Properties of Vegetable Oil from Irvigna gabonesis and Citrullus colocynthis Dried Seeds Samples, Int. J. Biochem. Res. Rev., vol. 4, no. 6, p.568–573, (2014).

DOI: 10.9734/ijbcrr/2014/5863

Google Scholar

[20] Z. N. Garba, A. Galadima, and A. A. Siaka, Mineral Composition , Physicochemical Properties and Fatty Acids Profile of Citrullus Vulgaris Seed Oil, Res. J. Chem. Sci., vol. 4, no. 6, p.54–57, (2014).

Google Scholar

[21] B. S. Nayak and K. N. Patel, Physicochemical characterization of seed and seed oil of Jatropha curcas L. Collected from bardoli (South Gujarat), Sains Malaysiana, vol. 39, no. 6, p.951–955, (2010).

Google Scholar

[22] A. T. Oladiji, M. T. Yakubu, A. S. Idoko, O. Adeyemi, and M. O. Salawu, Studies on the physicochemical properties and fatty acid composition of the oil from ripe plantain peel (Musa, African Sci., vol. 11, no. 1, p.73–78, (2010).

Google Scholar

[23] L. Qiang, Y. Xu-lai, and Z. Xi-feng, Journal of Analytical and Applied Pyrolysis Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk, vol. 82, p.191–198, (2008).

DOI: 10.1016/j.jaap.2008.03.003

Google Scholar

[24] A. Ivanoiu, A. Schmidt, F. Peter, L. M. Rusnac, and M. Ungurean, Comparative Study on Biodiesel Synthesis from Different Vegetables Oils, vol. 56, no. 70, p.94–98, (2011).

Google Scholar

[25] C. P. Singh and V. K. Chhibber, Research Article Chemical Modification in Karanja Oil for Biolubricant Industrial, vol. 3, no. 3, p.117–122, (2013).

Google Scholar

[26] A. Aravind, M. L. Joy, and K. P. Nair, Lubricant properties of biodegradable rubber tree seed ( Hevea brasiliensis Muell . Arg ) oil, vol. 74, p.14–19, (2015).

DOI: 10.1016/j.indcrop.2015.04.014

Google Scholar

[27] S. Liang, G. Yang, and Y. Ma, Chemical Characteristics and Fatty Acid Profile of Foxtail Millet Bran Oil, p.63–67, (2010).

DOI: 10.1007/s11746-009-1475-3

Google Scholar

[28] N. J. Fox, B. Tyrer, and G. W. Ã. Stachowiak, Boundary lubrication performance of free fatty acids in sunflower oil, Tribol. Lett., vol. 16, no. 4, p.275–281, (2004).

DOI: 10.1023/b:tril.0000015203.08570.82

Google Scholar