[1]
W. Klement, R.H. Willens, P.O. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature 187 (1960) 869–870.
DOI: 10.1038/187869b0
Google Scholar
[2]
M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science 55 (2010) 759–839.
DOI: 10.1016/j.pmatsci.2010.04.002
Google Scholar
[3]
T. Zhang, A. Inoue, New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa, Materials Transactions 43 (2002) 708–711.
DOI: 10.2320/matertrans.43.708
Google Scholar
[4]
A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000MPa, Intermetallics 14 (2006) 936–944.
DOI: 10.1016/j.intermet.2006.01.038
Google Scholar
[5]
A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nature materials 2 (2003) 661–663.
DOI: 10.1038/nmat982
Google Scholar
[6]
M. Lee, D. Bae, W. Kim, D. Kim, Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability, Materials Transactions 44 (2003) 2084–(2087).
DOI: 10.2320/matertrans.44.2084
Google Scholar
[7]
K. Lichtenberg, K.A. Weidenmann, Innovative Aluminum Based Metallic Glass Particle Reinforced MMCs Produced by Gas Pressure Infiltration, MSF 825-826 (2015) 101–108.
DOI: 10.4028/www.scientific.net/msf.825-826.101
Google Scholar
[8]
M. Lee, Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process, Scripta Materialia 50 (2004) 1367–1371.
DOI: 10.1016/j.scriptamat.2004.02.038
Google Scholar
[9]
M. Lee, J. Kim, J. Park, W. Kim, D. Kim, Development of Ni-Nb-Ta Metallic Glass Particle Reinforced Al Based Matrix Composites, MSF 475-479 (2005) 3427–3430.
DOI: 10.4028/www.scientific.net/msf.475-479.3427
Google Scholar
[10]
S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu, M. Gupta, Structural and mechanical properties of Ni60Nb40 amorphous alloy particle reinforced Al-based composites produced by microwave-assisted rapid sintering, Materials Science and Engineering: A 581 (2013).
DOI: 10.1016/j.msea.2013.05.072
Google Scholar
[11]
W. Hesse, Aluminium-Werkstoff-Datenblätter, fifth. Auflage, Aluminium-Verlag Düsseldorf, (2007).
Google Scholar
[12]
K. Lichtenberg, E. Orsolani-Uhlig, R. Roessler, K.A. Weidenmann, Influence of heat treatment on the properties of AlSi10Mg-based metal matrix composites reinforced with metallic glass flakes processed by gas pressure infiltration, Journal of Composite Materials 18 (2017).
DOI: 10.1177/0021998317699867
Google Scholar
[13]
S. Roy, O. Stoll, K.A. Weidenmann, A. Nagel, A. Wanner, Analysis of the elastic properties of an interpenetrating AlSi12–Al2O3 composite using ultrasound phase spectroscopy, Composites Science and Technology 71 (2011) 962–968.
DOI: 10.1016/j.compscitech.2011.02.014
Google Scholar
[14]
A. Wanner, Elastic modulus measurements of extremely porous ceramic materials by ultrasonic phase spectroscopy, Materials Science and Engineering: A 248 (1998) 35–43.
DOI: 10.1016/s0921-5093(98)00524-3
Google Scholar
[15]
D30 Committee, Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2015 (2015).
DOI: 10.1520/d7264_d7264m-21
Google Scholar
[16]
R.K. Nalla, J.H. Kinney, R.O. Ritchie, Mechanistic fracture criteria for the failure of human cortical bone, Nature materials 2 (2003) 164–168.
DOI: 10.1038/nmat832
Google Scholar
[17]
H.P. Degischer, Schmelzmetallurgische Herstellung von Metallmatrix-Verbundwerkstoffen, in: K.U. Kainer (Ed. ), Metallische Verbundwerkstoffe, DGM-Informationsges., Verl., Oberursel, 1994, p.139–168.
Google Scholar