In-Line Integration of Sensors in Thermoplastic Composite Structures Using Novel Continuous Orbital Winding Technology

Article Preview

Abstract:

Currently there is a great demand for energy and resource efficient and also function integrating manufacturing processes. Therefore, suitable technologies and corresponding foundational researches are being pursued in the federal cluster of excellence “MERGE Technologies for Multifunctional Lightweight Structures” at the Technische Universität Chemnitz. A part of this project is the development of the continuous orbital winding (COW) technology including the goal of a large-scale process used for special fiber-reinforced thermoplastic semi-finished products. This method is an inverted winding process. The winding core needs to perform only the feed motion. Furthermore, this allows synchronization to upstream and downstream process chains.Due to the modular structure of the machine concept, it is possible to integrate a sensor system during production without interrupting the process. For this purpose, a textile carrier tape with integrated electrically conductive fibers and applied sensors is embedded. Various silicon sensors, e.g. acceleration, pressure or stress sensors are applied by micro-injection molding. A so-called “interposer” is used as an electrically adapter between the microstructures of the sensor system and the mesostructures of the textile.In this article, basic investigations for the continuous processing of semi-finished thermoplastic structures and the integration of sensors are presented. It is intended to determine the bonding properties, possible structural thickening by the sensors and the resistance of the sensor systems and its electronic components to the process conditions.In summary, investigations are carried out to determine the parameters of the machine system as well as to determine the optimum processing conditions for the application of additional elements.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] R. Schulze, P. Streit, T. Fischer, A. Tsapkolenko, M. Heinrich, M. Sborikas, L. Kroll, T. Gessner, M. Wegener, Fiber-reinforced Composite Structures with Embedded Piezoelectric Sensors, IEEE SENSORS 2014, Valencia, Spain, 2014, DOI: 10. 1109/ICSENS. 2014. 6985315.

DOI: 10.1109/icsens.2014.6985315

Google Scholar

[2] L. Kroll, W. Nendel, M. Heinrich, R. Stelzer, J. Tröltzsch, M. Walther, Valuation of process-induced initial stresses of micro injection moulded piezo-active hybrid modules, Journal of Plastics Technology 7 (1), pp.17-43, (2011).

DOI: 10.1007/978-3-642-17384-4_10

Google Scholar

[3] R. Schulze, M. Heinrich, P. Nossol, R. Forke, M. Sborikas, A. Tsapkolenko, D. Billep, M. Wegener, L. Kroll, T. Gessner, Piezoelectric P(VDF-TrFE) transducers assembled with micro injection molded polymers, Sensors and Actuators A: Physical 208, pp.159-165.

DOI: 10.1016/j.sna.2013.12.032

Google Scholar

[4] A. Sorger, C. Auerswald, A. Shaporin, M. Freitag, M. Dienel, J. Mehner: Design, Modeling, Fabrication and Characterization of a MEMS Acceleration Sensor for Acoustic Emission Testing, 17th International Conference on Solid-State Sensors, Acturators and Microsystems (TRANSDUCERS 2013), Barcelona, Spain, 2013, DOI: 10. 1109/Transducers. 2013. 6626869.

DOI: 10.1109/transducers.2013.6626869

Google Scholar

[5] Wallasch, R.; Tirschmann, R.; Spieler, M.; Nendel, W.; Kroll, L.: Continuous Winding Technology for Specific Closed Structural Components. 20th Symposium on Composites, Wien, 2015, S. 687-694, ISBN: 978-3-03835-515-1.

DOI: 10.4028/www.scientific.net/msf.825-826.687

Google Scholar

[6] R. Wallasch, R. Tirschmann, M. Spieler, W. Nendel, L. Kroll, DE102015009250A1: Verfahren und Anlage zum kontinuierlichen Herstellen endlosfaserverstärkter rotationssymmetrischer und/oder nicht rotations-symmetrischer Bauteile mit unterschiedlichen Querschnittsverläufen mittels Orbitalwickeltechnik, German Patent and Trademark Office, 21. 07. (2015).

Google Scholar

[7] R. Wallasch; R. Tirschmann; M. Spieler; W. Nendel; L. Kroll: Mehrkörpersimulation zur Realisierung ei-ner Demonstratoranlage für die Orbitalwickeltech-nologie. SAXSIM - Saxon Simulation Meeting, Chemnitz, Germany, 2015; ISBN: 978-3-944640-47-1.

Google Scholar

[8] R. Wallasch, R. Tirschmann, M. Spieler, W. Nendel, L. Kroll, Pilotanlage der Orbitalwickeltechnologie für die kontinuierliche Fertigung endlosfaserverstärkter Strukturbauteile, 15. Chemnitzer Textiltechniktagung, Chemnitz, Germany, 2016, pp.247-255.

Google Scholar

[9] F. Rost, B. Arnold, R. Decker, A. Bauer, A. Tsapkolenko, L. Kroll, J. Mehner, S. Rzepka, Development of sensor integration concept for mass production processes, Smart Systems Integration 2017, Cork, Ireland, (2017).

DOI: 10.21935/tls.v1i2.82

Google Scholar

[10] M. Heinrich, R. Decker, J. Schaufuß, J. Tröltzsch, J. Mehner, L. Kroll, Electrical contact properties of micro-injection molded Polypropylene/CNT/CB-composites on metallic electrodes, Advanced Materials Research 1103, pp.77-83.

DOI: 10.4028/www.scientific.net/amr.1103.77

Google Scholar