[1]
S. W. Choi, et al. Durability characteristics of fly ash concrete containing lightly-burnt MgO, Constr. Build. Mater. 58 (2014) 77-84.
DOI: 10.1016/j.conbuildmat.2014.01.080
Google Scholar
[2]
P. K. Mehta, D. Pirtz. Magnesium oxide additive for producing self-stress in mass concrete. 7th International Congress on the Chemistry of Cement. 3(3) Paris, (1980).
Google Scholar
[3]
S. Chatterji, Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO. Cem. Concr. Res. 25(1) (1995) 51-56.
DOI: 10.1016/0008-8846(94)00111-b
Google Scholar
[4]
Z. Li, J. Wei, Q. Yu, et al., Characterization of reaction products and reaction process of MgO-SiO2-H2O system at room temperature, Constr. Build. Mater. 61 (2014) 252-259.
DOI: 10.1016/j.conbuildmat.2014.03.004
Google Scholar
[5]
V. Kasselouris, C. Ftikos, G. Parissakis. On the hydration of MgO in cement pastes hydrated up to eight years. Cem. Concr. Res. 15 (1985) 758–764.
DOI: 10.1016/0008-8846(85)90140-1
Google Scholar
[6]
P. K. Mehta, D. Pirtz. Magnesium oxide additive for producing selfstress in mass-concrete. In: Proceedings of the seventh international congress on the chemistry of cement, Paris, France, 3 (1980) 6–9.
Google Scholar
[7]
A. M. M. Mullick. Volume stabilization of high MgO cement: effect of curing conditions and fly ash addition. Cem. Concr. Res. 28 (1998) 1585–1594.
DOI: 10.1016/s0008-8846(98)00140-9
Google Scholar
[8]
E. Kristof-Mako, A. Z. Juhasz. The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochim. Acta. 342 (1999) 105–114.
Google Scholar
[9]
M. Samtani, D. Dollimore, K. S. Alexander. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetics parameters. Thermochim. Acta. 392 (2002) 135–145.
DOI: 10.1016/s0040-6031(02)00094-1
Google Scholar
[10]
N. K. Katyal, S. C. Ahluwalia, R. Parkash. Solid solution and hydration behaviour magnesium-bearing tricalcium silicate phase. Cem. Concr. Res. 28(6) (1998) 867–875.
DOI: 10.1016/s0008-8846(98)00052-0
Google Scholar
[11]
L. Zonghan, Y. Qing, C. Huxing, W. Yuqing, S. Jinlin. Hydration of MgO in clinker and its expansion property. J. Chin. Ceramic. Soc. 26(4) (1998) 430–436.
Google Scholar
[12]
L. Mo, M. Deng, M. Tang. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Concr. Res. 40 (2010) 437–446.
DOI: 10.1016/j.cemconres.2009.09.025
Google Scholar
[13]
Z. H. Li, Q. J. Yu, X. W. Chen, et al. The role of MgO in the thermal behaviour of MgO–silica fume pastes: submitted to Journal of Thermal Analysis and Calorimetry (2016).
DOI: 10.1007/s10973-016-5827-6
Google Scholar
[14]
M. S. Meddah, M. Suzuki, R. Sato. Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete. Constr. Build. Mater. 25(1) (2011) 239–250.
DOI: 10.1016/j.conbuildmat.2010.06.033
Google Scholar
[15]
R. Krstulovic, P. Dabic. A conceptual model of the cement hydration process. Cem. Concr. Res. 30 (2000) 693–698.
Google Scholar