[1]
UNEP, Global MercuryAssessment 2013, (2013).
Google Scholar
[2]
C. s. MEP, Emission standard of air pollutants for thermal power plants, China Environment Science Press, Beijing, (2011).
Google Scholar
[3]
Y. Liu, Y. Wang, H. Wang, Z. Wu, Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol – gel method, Catal. Commun. 12 (2011) 1291-1294.
DOI: 10.1016/j.catcom.2011.04.017
Google Scholar
[4]
J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, S. A. Benson, Status review of mercury control options for coal-fired power plants, Fuel Process. Technol. 82 (2003) 89-165.
DOI: 10.1016/s0378-3820(03)00059-6
Google Scholar
[5]
G. S. Zhang, J. H. Qu, H. J. Liu, R. P. Liu, G. T. Li, Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption, Environ. Sci. Technol. 41 (2007) 4613-4619.
DOI: 10.1021/es063010u
Google Scholar
[6]
G. S. Qi, R. T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B 44 (2003) 217-225.
DOI: 10.1016/s0926-3373(03)00100-0
Google Scholar
[7]
I. Georgiadou, Ch. Papadopoulou, H. K. Matralis, G. A. Voyiatzis, A. Lycourghiotis, Ch. Kordulis, Preparation, Characterization, and Catalytic Properties for the SCR of NO by NH3 of V2O5/TiO2 Catalysts Prepared by Equilibrium Deposition Filtration, J. Phys. Chem. B, 102 (1998).
DOI: 10.1021/jp973187y
Google Scholar
[8]
G. C. Behera, K. Parida, Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate, Chem. Eng. J. 180 (2012) 270-276.
DOI: 10.1016/j.cej.2011.11.047
Google Scholar
[9]
C. Bolm, Vanadium-catalyzed asymmetric oxidations, Coordin. Chem. Rev. 237 (2003).
Google Scholar
[10]
M. Kirihara, Aerobic oxidation of organic compounds catalyzed by vanadium compounds, Coordin. Chem. Rev. 255 (2011) 2281-2302.
DOI: 10.1016/j.ccr.2011.04.001
Google Scholar
[11]
M. R. Maurya, A. Kumar, J. C. Pessoa, Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes, Coordin. Chem. Rev. 255 (2011) 2315-2344.
DOI: 10.1016/j.ccr.2011.01.050
Google Scholar
[12]
B. Olthof, A. Khodakov, A. T. Bell, E. Iglesia, Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2, J. Phys. Chem. B 104 (2000) 1516-1528.
DOI: 10.1021/jp9921248
Google Scholar
[13]
H. Kamata, S. Ueno, N. T. A. Toshiyuki, A. Yamaguchi, S. Ito, Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst, Catal. Commun. 9 (2008) 2441-2444.
DOI: 10.1016/j.catcom.2008.06.010
Google Scholar
[14]
D. R. Milburn, R. A. Keogh, D. E. Sparks, B. H. Davis, XPS investigation of an iron/manganese/sulfated zirconia catalyst, Appl. Surf. Sci. 126 (1998) 11-15.
DOI: 10.1016/s0169-4332(97)00689-2
Google Scholar
[15]
Structure and dispersion of supported-vanadia catalysts. Influence of the oxide carrier.
Google Scholar
[16]
H. Kamata, S. Ueno, T. Naito, A. Yukimura, Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst, Ind. Eng. Chem. Res. 47 (2008) 8136-8141.
DOI: 10.1021/ie800363g
Google Scholar
[17]
H. Kamata, S. -i. Ueno, N. Sato, T. Naito, Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas, Fuel Process. Technol. 90 (2009) 947-951.
DOI: 10.1016/j.fuproc.2009.04.010
Google Scholar
[18]
W. J. Lee, G. N. Bae, Removal of Elemental Mercury (Hg(O) by Nanosized V2O5/TiO2 Catalysts, Environ. Sci. Technol. 43 (2009) 1522-1527.
DOI: 10.1021/es802456y
Google Scholar
[19]
S. He, J. S. Zhou, Y. Q. Zhu, Z. Y. Luo, M. J. Ni, K. F. Cen, Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst, Energ. Fuel 23 (2009) 253-259.
DOI: 10.1021/ef800730f
Google Scholar
[20]
R. V. Gulyaev, E. M. Slavinskaya, S. A. Novopashin, D. V. Smovzh, A. V. Zaikovskii, D. Y. Osadchii, O. A. Bulavchenko, S. V. Korenev, A. I. Boronin, Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis, Appl. Catal. B 147 (2014).
DOI: 10.1016/j.apcatb.2013.08.043
Google Scholar
[21]
S. Hinokuma, H. Kogami, N. Yamashita, Y. Katsuhara, K. Ikeue, M. Machida, Subnano-particle Ce catalyst prepared by pulsed arc-plasma process, Catal. Commun. 54 (2014) 81-85.
DOI: 10.1016/j.catcom.2014.05.025
Google Scholar
[22]
A. Khataee, T. S. Rad, B. Vahid, S. Khorram, Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process, Ultrason. Sonochem. 33 (2016) 37-46.
DOI: 10.1016/j.ultsonch.2016.04.015
Google Scholar
[23]
R. Singh, Electron spin resonance study of interactions between iron and vanadium ions in TeO2-V2O5-Fe2O3 glasses, J. Phys. D 17 (1984) L163.
Google Scholar