Treatment of V2O5/TiO2 by Non-Thermal Plasma: Changes in Surface Characters and Mercury Oxidation Activity

Article Preview

Abstract:

The technology for mercury removal in coal-fired power plant is still under development. In the flue gas, elemental mercury is the main component of mercury, and is hard to be removed due to its high volatility and low solubility. So converting Hg0 to Hg2+ in or ahead of the FGD is significant to enhance mercury removal. In this work, plasma treatment method was used to prepare V2O5/TiO2 catalysts for effectively oxidation of Hg0. Plasma treatment of V2O5/TiO2 resulted in the improvement of mercury oxidation activity. The Hg0 oxidation efficiency of the catalysts treated by plasma is over 82% at 300 °C, which is about 30% higher than that of the untreated catalyst. The catalysts were characterized using SEM, BET and EPR. SEM results indicated that plasma treatment can create cracks and small particles on simple surface, however, calcinations cause sintering and agglomeration. The superior catalytic performance is mainly attributed to the formation of particles attached to the catalyst surface, the higher amount of V4+ ions and vacancies on the catalyst surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-524

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] UNEP, Global MercuryAssessment 2013, (2013).

Google Scholar

[2] C. s. MEP, Emission standard of air pollutants for thermal power plants, China Environment Science Press, Beijing, (2011).

Google Scholar

[3] Y. Liu, Y. Wang, H. Wang, Z. Wu, Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol – gel method, Catal. Commun. 12 (2011) 1291-1294.

DOI: 10.1016/j.catcom.2011.04.017

Google Scholar

[4] J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, S. A. Benson, Status review of mercury control options for coal-fired power plants, Fuel Process. Technol. 82 (2003) 89-165.

DOI: 10.1016/s0378-3820(03)00059-6

Google Scholar

[5] G. S. Zhang, J. H. Qu, H. J. Liu, R. P. Liu, G. T. Li, Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption, Environ. Sci. Technol. 41 (2007) 4613-4619.

DOI: 10.1021/es063010u

Google Scholar

[6] G. S. Qi, R. T. Yang, Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, Appl. Catal. B 44 (2003) 217-225.

DOI: 10.1016/s0926-3373(03)00100-0

Google Scholar

[7] I. Georgiadou, Ch. Papadopoulou, H. K. Matralis, G. A. Voyiatzis, A. Lycourghiotis, Ch. Kordulis, Preparation, Characterization, and Catalytic Properties for the SCR of NO by NH3 of V2O5/TiO2 Catalysts Prepared by Equilibrium Deposition Filtration, J. Phys. Chem. B, 102 (1998).

DOI: 10.1021/jp973187y

Google Scholar

[8] G. C. Behera, K. Parida, Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate, Chem. Eng. J. 180 (2012) 270-276.

DOI: 10.1016/j.cej.2011.11.047

Google Scholar

[9] C. Bolm, Vanadium-catalyzed asymmetric oxidations, Coordin. Chem. Rev. 237 (2003).

Google Scholar

[10] M. Kirihara, Aerobic oxidation of organic compounds catalyzed by vanadium compounds, Coordin. Chem. Rev. 255 (2011) 2281-2302.

DOI: 10.1016/j.ccr.2011.04.001

Google Scholar

[11] M. R. Maurya, A. Kumar, J. C. Pessoa, Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes, Coordin. Chem. Rev. 255 (2011) 2315-2344.

DOI: 10.1016/j.ccr.2011.01.050

Google Scholar

[12] B. Olthof, A. Khodakov, A. T. Bell, E. Iglesia, Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, Al2O3, TiO2, ZrO2, and HfO2, J. Phys. Chem. B 104 (2000) 1516-1528.

DOI: 10.1021/jp9921248

Google Scholar

[13] H. Kamata, S. Ueno, N. T. A. Toshiyuki, A. Yamaguchi, S. Ito, Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst, Catal. Commun. 9 (2008) 2441-2444.

DOI: 10.1016/j.catcom.2008.06.010

Google Scholar

[14] D. R. Milburn, R. A. Keogh, D. E. Sparks, B. H. Davis, XPS investigation of an iron/manganese/sulfated zirconia catalyst, Appl. Surf. Sci. 126 (1998) 11-15.

DOI: 10.1016/s0169-4332(97)00689-2

Google Scholar

[15] Structure and dispersion of supported-vanadia catalysts. Influence of the oxide carrier.

Google Scholar

[16] H. Kamata, S. Ueno, T. Naito, A. Yukimura, Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst, Ind. Eng. Chem. Res. 47 (2008) 8136-8141.

DOI: 10.1021/ie800363g

Google Scholar

[17] H. Kamata, S. -i. Ueno, N. Sato, T. Naito, Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas, Fuel Process. Technol. 90 (2009) 947-951.

DOI: 10.1016/j.fuproc.2009.04.010

Google Scholar

[18] W. J. Lee, G. N. Bae, Removal of Elemental Mercury (Hg(O) by Nanosized V2O5/TiO2 Catalysts, Environ. Sci. Technol. 43 (2009) 1522-1527.

DOI: 10.1021/es802456y

Google Scholar

[19] S. He, J. S. Zhou, Y. Q. Zhu, Z. Y. Luo, M. J. Ni, K. F. Cen, Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst, Energ. Fuel 23 (2009) 253-259.

DOI: 10.1021/ef800730f

Google Scholar

[20] R. V. Gulyaev, E. M. Slavinskaya, S. A. Novopashin, D. V. Smovzh, A. V. Zaikovskii, D. Y. Osadchii, O. A. Bulavchenko, S. V. Korenev, A. I. Boronin, Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis, Appl. Catal. B 147 (2014).

DOI: 10.1016/j.apcatb.2013.08.043

Google Scholar

[21] S. Hinokuma, H. Kogami, N. Yamashita, Y. Katsuhara, K. Ikeue, M. Machida, Subnano-particle Ce catalyst prepared by pulsed arc-plasma process, Catal. Commun. 54 (2014) 81-85.

DOI: 10.1016/j.catcom.2014.05.025

Google Scholar

[22] A. Khataee, T. S. Rad, B. Vahid, S. Khorram, Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process, Ultrason. Sonochem. 33 (2016) 37-46.

DOI: 10.1016/j.ultsonch.2016.04.015

Google Scholar

[23] R. Singh, Electron spin resonance study of interactions between iron and vanadium ions in TeO2-V2O5-Fe2O3 glasses, J. Phys. D 17 (1984) L163.

Google Scholar