Synthesis of Cast Composite Materials by SHS Metallurgy Methods

Article Preview

Abstract:

The review of the results obtained by the authors in synthesis of cast composite materials by the methods of SHS metallurgy is made. The main attention is paid to synthesis of heat-resistant materials based on intermetallic compounds of nickel and titanium and niobium silicides as well as tungsten-free hard alloys based on titanium and chromium carbides. The parameters allowing one to govern the process, material structure and composition were determined. Practical application was specified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-232

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.S. Karabasov, New materials, Moscow, MISIS, (2002).

Google Scholar

[2] E.N. Kablov, Aviation materials. Handbook, Moscow, VIAM, No. 1, (2007).

Google Scholar

[3] V.I. Tretyakov, Foundations of materials science and production technology of sintered hard alloys, Moscow, Metallurgiya, (1976).

Google Scholar

[4] A.G. Merzhanov, Worldwide evolution and present status of SHS as a branch of modern R & D (to the 30 anniversary of SHS), Int. J. SHS. 2 (1997) 119-163.

Google Scholar

[5] V.I. Yukhvid, Modification of SHS-processes, Pure and Appl. Chem. 64 7 (1992) 977-988.

Google Scholar

[6] V.I. Yukhvid, G.A. Vishnyakova, S.L. Silyakov, V.N. Sanin, and A.R. Kachin, Structural Macrokinetics of Alumothermic SHS Processes, Int. J. SHS. 1 1 (1996) 93-105.

Google Scholar

[7] M.R. Jackson, B.P. Bewley, R.G. Rowe, D.W. Skelly et al, High Temperature Refractory Metal Intermetallic Composites, JOM. 48 1 (1999) 39-44.

DOI: 10.1007/bf03221361

Google Scholar

[8] P.R. Subramanian, M.G. Mendiratta, D.M. Dimidak, Development of Nb based Advanced Intermetallic Alloys for Structural Application, JOM. 48 1 (1996) 33-38.

DOI: 10.1007/bf03221360

Google Scholar

[9] B.P. Bewley, M.R. Jackson, P. R Subramanian, Processing High Temperature Refractory Metall Silicide in situ Comp., JOM. 51 4 (1999) 32-36.

DOI: 10.1007/s11837-999-0077-8

Google Scholar

[10] B.P. Bewley, n M.R. Jackso, J.C. Zhao, P.R. Subramanian, A Review of Very High Temperature Nb"Silicide, basedComposites, Metall. Mater. Trans. 34 10 (2003) 2043-(2052).

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[11] I.L. Svetlov, B.N. Babich, S. Ya. Vlasenko, I. Yu. Efimochkin, et. al., High-temperature niobium composites strengthened by niobium silicides, FM, 1 2 (2007) 48-53.

Google Scholar

[12] V.M. Imayev, R.M. Imayev, T.I. Oleneva, Current status of γ-TiAl intermetallic alloys investigation and prospect for technology developments, Letters on materials. 1 (2011) 25-31.

DOI: 10.22226/2410-3535-2011-1-25-31

Google Scholar

[13] H. C Yi., A. Petric, J.J. Moore, Synthesis of Ti-Al intermetallic compounds by combustion synthesis, Solid-State Phenomena. 25 26 (1992) 225-232.

DOI: 10.4028/www.scientific.net/ssp.25-26.225

Google Scholar

[14] E. Medda, F. Delogu, G. Cao, Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides, Materials Science and Engineering, A361, (2003) 23-28.

DOI: 10.1016/s0921-5093(03)00566-5

Google Scholar

[15] K. Uenishi, T. Matsubara, M. Kambara, and N. Kobayashi, Nanostructured titanium-aluminides and theircomposites formed by combustion synthesis of mechanically alloyed powders, Scripta materialia, 44 (2001) 2093-(2097).

DOI: 10.1016/s1359-6462(01)00881-8

Google Scholar

[16] K. Taguchi, M. Ayada, K.N. Ishihara, and P.H. Shingu, Near-net shape processing of TiAl intermetallic compounds via pseudo HIP-SHS roure, Intermetallic 3 (1995) 91-98.

DOI: 10.1016/0966-9795(95)92673-n

Google Scholar

[17] R. Orru, G. Cao, and A. Munir, Mechnistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides, Chemical engineering Science, 54 15-16 (1999) 3349-3355.

DOI: 10.1016/s0009-2509(98)00459-x

Google Scholar

[18] V.I. Yukhvid, High-temperature liquid-phase SHS processes: new directions and tasks, Tsvetnaya metallurgiya. 5 (2006) 62-78.

Google Scholar

[19] E.A. Levashov, A.S. Rogachev, V.V. Kurbatkina, Yu.M. Maksimov, V.I. Yukhvid, Promising materials and technologies of self-propagating high-temperature synthesis, Moscow, MISIS, (2011).

Google Scholar

[20] V.I. Yukhvid1, M.I. Alymov, V.N. Sanin, D.E. Andreev, SHS Metallurgy of NiAl-Based Alloy, Key Engineering Materials, 684 (2016) 353-358.

DOI: 10.4028/www.scientific.net/kem.684.353

Google Scholar

[21] V. Sanin, V. Yukhvid, A. Sychev, D. Andreev, Combustion synthesis if cast intermetallic Ti-Al-Nb alloyes in a centrifugal machine, Kovove mater. 44 (2006) 49-55.

Google Scholar

[22] V.I. Yukvid, M.I. Alymov, V.N. Sanin, D.E. Andreev, N.V. Sachkova, Synthesis of composite materials based on niobium silicides by SHS metallurgy, Neorg. Mater., 51 12 (2015) 1347-1354.

DOI: 10.1134/s0020168515110151

Google Scholar

[23] Yu.S. Pogozhev, V.N. Sanin, D.M. Ikornikov, D.E. Andreev, V.I. Yukhvid, E.A. Levashov, Zh.A. Sentyurina, A.I. Logacheva, and A.N. Timofeev, NiAl-Based Electrodes by Combined Use of Centrifugal SHS and Induction Remelting, Int. J. SHS. 25 3 (2016).

DOI: 10.3103/s1061386216030092

Google Scholar

[24] D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 3 (2012) 133-164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[25] L. Robinson and J. Scott, Layers of Complexity: Making the Promises Possible for Additive Manufacturing of Metals, JOM, 66 11 (2014) 2194-2207.

DOI: 10.1007/s11837-014-1166-x

Google Scholar

[26] D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 3 (2012) 133-164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[27] R. Kiffer, F. Benezovsky, Hard alloys. Translated from German, Ed.: V.I. Tretyakov, Metallurgiya, Moscow, (1971).

Google Scholar

[28] R. Kiffer, F. Benezovsky, Hard alloys. Translated from German, Ed.: V.I. Tretyakov, Metallurgiya, Moscow, (1968).

Google Scholar

[29] K. Iizumi, K. Kudaka, S. Odaka, Synthesis of chromium borides by solid-state reaction between chromium oxide (III) and amorphous boron powders, Journal of The Ceramic Society of Japan. 106 1237 (1998) 931-934.

DOI: 10.2109/jcersj.106.931

Google Scholar

[30] K. Iizumi, K. Kudaka, D. Maezawa, T. Sasaki, Mechanochemical synthesis of chromium borides, Journal of The Ceramic Society of Japan. 107 5 (1999) 491-493.

DOI: 10.2109/jcersj.107.491

Google Scholar

[31] P.K. Rajagopalan, T.S. Krishnan, D.K. Bose, Development of carbothermy for the preparation of hepta chromium carbide, Journal of Alloys and Compounds, 297 1–2 (2000) L1-L4.

DOI: 10.1016/s0925-8388(99)00571-x

Google Scholar

[32] S. Hashimoto, A. Yamaguchi, Preparation of porous Cr3C2 grains with Cr2O3, Journal of American Ceramic Society. 79 9 (1996) 2503-2505.

DOI: 10.1111/j.1151-2916.1996.tb09007.x

Google Scholar

[33] M. Mahajan, S. Rajpoot, O.P. Pandey, In-situ synthesis of chromium carbide (Cr3C2) nanopowders by chemical-reduction route, Int. Journal of Refractory Metals and Hard Materials. 50 (2015) 113-119.

DOI: 10.1016/j.ijrmhm.2014.12.010

Google Scholar

[34] H. Huang, P.G. McCormick, Effect of milling conditions on the synthesis of chromium carbides by mechanica lalloying, Journal of Alloys and Compounds. 256 (1997) 258-262.

DOI: 10.1016/s0925-8388(96)03010-1

Google Scholar