[1]
Yu.S. Karabasov, New materials, Moscow, MISIS, (2002).
Google Scholar
[2]
E.N. Kablov, Aviation materials. Handbook, Moscow, VIAM, No. 1, (2007).
Google Scholar
[3]
V.I. Tretyakov, Foundations of materials science and production technology of sintered hard alloys, Moscow, Metallurgiya, (1976).
Google Scholar
[4]
A.G. Merzhanov, Worldwide evolution and present status of SHS as a branch of modern R & D (to the 30 anniversary of SHS), Int. J. SHS. 2 (1997) 119-163.
Google Scholar
[5]
V.I. Yukhvid, Modification of SHS-processes, Pure and Appl. Chem. 64 7 (1992) 977-988.
Google Scholar
[6]
V.I. Yukhvid, G.A. Vishnyakova, S.L. Silyakov, V.N. Sanin, and A.R. Kachin, Structural Macrokinetics of Alumothermic SHS Processes, Int. J. SHS. 1 1 (1996) 93-105.
Google Scholar
[7]
M.R. Jackson, B.P. Bewley, R.G. Rowe, D.W. Skelly et al, High Temperature Refractory Metal Intermetallic Composites, JOM. 48 1 (1999) 39-44.
DOI: 10.1007/bf03221361
Google Scholar
[8]
P.R. Subramanian, M.G. Mendiratta, D.M. Dimidak, Development of Nb based Advanced Intermetallic Alloys for Structural Application, JOM. 48 1 (1996) 33-38.
DOI: 10.1007/bf03221360
Google Scholar
[9]
B.P. Bewley, M.R. Jackson, P. R Subramanian, Processing High Temperature Refractory Metall Silicide in situ Comp., JOM. 51 4 (1999) 32-36.
DOI: 10.1007/s11837-999-0077-8
Google Scholar
[10]
B.P. Bewley, n M.R. Jackso, J.C. Zhao, P.R. Subramanian, A Review of Very High Temperature Nb"Silicide, basedComposites, Metall. Mater. Trans. 34 10 (2003) 2043-(2052).
DOI: 10.1007/s11661-003-0269-8
Google Scholar
[11]
I.L. Svetlov, B.N. Babich, S. Ya. Vlasenko, I. Yu. Efimochkin, et. al., High-temperature niobium composites strengthened by niobium silicides, FM, 1 2 (2007) 48-53.
Google Scholar
[12]
V.M. Imayev, R.M. Imayev, T.I. Oleneva, Current status of γ-TiAl intermetallic alloys investigation and prospect for technology developments, Letters on materials. 1 (2011) 25-31.
DOI: 10.22226/2410-3535-2011-1-25-31
Google Scholar
[13]
H. C Yi., A. Petric, J.J. Moore, Synthesis of Ti-Al intermetallic compounds by combustion synthesis, Solid-State Phenomena. 25 26 (1992) 225-232.
DOI: 10.4028/www.scientific.net/ssp.25-26.225
Google Scholar
[14]
E. Medda, F. Delogu, G. Cao, Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides, Materials Science and Engineering, A361, (2003) 23-28.
DOI: 10.1016/s0921-5093(03)00566-5
Google Scholar
[15]
K. Uenishi, T. Matsubara, M. Kambara, and N. Kobayashi, Nanostructured titanium-aluminides and theircomposites formed by combustion synthesis of mechanically alloyed powders, Scripta materialia, 44 (2001) 2093-(2097).
DOI: 10.1016/s1359-6462(01)00881-8
Google Scholar
[16]
K. Taguchi, M. Ayada, K.N. Ishihara, and P.H. Shingu, Near-net shape processing of TiAl intermetallic compounds via pseudo HIP-SHS roure, Intermetallic 3 (1995) 91-98.
DOI: 10.1016/0966-9795(95)92673-n
Google Scholar
[17]
R. Orru, G. Cao, and A. Munir, Mechnistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides, Chemical engineering Science, 54 15-16 (1999) 3349-3355.
DOI: 10.1016/s0009-2509(98)00459-x
Google Scholar
[18]
V.I. Yukhvid, High-temperature liquid-phase SHS processes: new directions and tasks, Tsvetnaya metallurgiya. 5 (2006) 62-78.
Google Scholar
[19]
E.A. Levashov, A.S. Rogachev, V.V. Kurbatkina, Yu.M. Maksimov, V.I. Yukhvid, Promising materials and technologies of self-propagating high-temperature synthesis, Moscow, MISIS, (2011).
Google Scholar
[20]
V.I. Yukhvid1, M.I. Alymov, V.N. Sanin, D.E. Andreev, SHS Metallurgy of NiAl-Based Alloy, Key Engineering Materials, 684 (2016) 353-358.
DOI: 10.4028/www.scientific.net/kem.684.353
Google Scholar
[21]
V. Sanin, V. Yukhvid, A. Sychev, D. Andreev, Combustion synthesis if cast intermetallic Ti-Al-Nb alloyes in a centrifugal machine, Kovove mater. 44 (2006) 49-55.
Google Scholar
[22]
V.I. Yukvid, M.I. Alymov, V.N. Sanin, D.E. Andreev, N.V. Sachkova, Synthesis of composite materials based on niobium silicides by SHS metallurgy, Neorg. Mater., 51 12 (2015) 1347-1354.
DOI: 10.1134/s0020168515110151
Google Scholar
[23]
Yu.S. Pogozhev, V.N. Sanin, D.M. Ikornikov, D.E. Andreev, V.I. Yukhvid, E.A. Levashov, Zh.A. Sentyurina, A.I. Logacheva, and A.N. Timofeev, NiAl-Based Electrodes by Combined Use of Centrifugal SHS and Induction Remelting, Int. J. SHS. 25 3 (2016).
DOI: 10.3103/s1061386216030092
Google Scholar
[24]
D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 3 (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[25]
L. Robinson and J. Scott, Layers of Complexity: Making the Promises Possible for Additive Manufacturing of Metals, JOM, 66 11 (2014) 2194-2207.
DOI: 10.1007/s11837-014-1166-x
Google Scholar
[26]
D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 3 (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[27]
R. Kiffer, F. Benezovsky, Hard alloys. Translated from German, Ed.: V.I. Tretyakov, Metallurgiya, Moscow, (1971).
Google Scholar
[28]
R. Kiffer, F. Benezovsky, Hard alloys. Translated from German, Ed.: V.I. Tretyakov, Metallurgiya, Moscow, (1968).
Google Scholar
[29]
K. Iizumi, K. Kudaka, S. Odaka, Synthesis of chromium borides by solid-state reaction between chromium oxide (III) and amorphous boron powders, Journal of The Ceramic Society of Japan. 106 1237 (1998) 931-934.
DOI: 10.2109/jcersj.106.931
Google Scholar
[30]
K. Iizumi, K. Kudaka, D. Maezawa, T. Sasaki, Mechanochemical synthesis of chromium borides, Journal of The Ceramic Society of Japan. 107 5 (1999) 491-493.
DOI: 10.2109/jcersj.107.491
Google Scholar
[31]
P.K. Rajagopalan, T.S. Krishnan, D.K. Bose, Development of carbothermy for the preparation of hepta chromium carbide, Journal of Alloys and Compounds, 297 1–2 (2000) L1-L4.
DOI: 10.1016/s0925-8388(99)00571-x
Google Scholar
[32]
S. Hashimoto, A. Yamaguchi, Preparation of porous Cr3C2 grains with Cr2O3, Journal of American Ceramic Society. 79 9 (1996) 2503-2505.
DOI: 10.1111/j.1151-2916.1996.tb09007.x
Google Scholar
[33]
M. Mahajan, S. Rajpoot, O.P. Pandey, In-situ synthesis of chromium carbide (Cr3C2) nanopowders by chemical-reduction route, Int. Journal of Refractory Metals and Hard Materials. 50 (2015) 113-119.
DOI: 10.1016/j.ijrmhm.2014.12.010
Google Scholar
[34]
H. Huang, P.G. McCormick, Effect of milling conditions on the synthesis of chromium carbides by mechanica lalloying, Journal of Alloys and Compounds. 256 (1997) 258-262.
DOI: 10.1016/s0925-8388(96)03010-1
Google Scholar