Study of Al-Cu-Mn and Al-Mg-Si Alloys Thin Sheets Weldability

Article Preview

Abstract:

In this paper weldability study of low-alloyed thermal resistant conductor alloys of Al-Cu-Mn and Al-Mg-Si alloying systems with different content of B, Sc, Fe, Zr and ability to resist corrosion in the welding area is presented. The effect of large intensive deformation in the welding area on the phase composition and the size of phases was determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-28

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.N. Friedlander (Ed. ), Non-ferrous metals and alloys. Composite metallic materials: encyclopedia, volume II-3, Mashinostroenie, Moscow, (2001).

Google Scholar

[2] I.N. Friedlander, G.E. Goldhukht et al, in: M.B. Altman, G.N. Andreev et al (Eds. ), Application of the aluminum alloys: a Handbook, Metallurgy, Moscow, 1985, pp.194-205.

Google Scholar

[3] N.A. Belov, A.N. Alabin, A.R. Teleuova, Comparative analysis of alloying elements applied to the manufacture of heat-resistant aluminum-based wires, Metal Science and Heat Treatment, 9 (2011) 54-58.

DOI: 10.1007/s11041-012-9415-5

Google Scholar

[4] Y.V. Matveev, V.P. Gavrilov, V.V. Baranov, Light conductor materials for aviation wires, Cables and Wires, 5 (2006) 22-23.

Google Scholar

[5] Song Chul Lim, Sang Woo Park, Sung Tae Kim, Jun Young Park, Aluminium alloy for extrusion moulding having outstanding strength and workability, Republic Korea Patent WO2013047986, IPC C22C21/00. (2013).

Google Scholar

[6] A.D. Howells, Aluminium foil alloy, U.S. Patent 2012230862, IPC B22D11/00. (2012).

Google Scholar

[7] QI ZENG, High-strength wear-resisting heat-resisting aluminium alloy material and preparation process thereof, China Patent CN102758109, IPC С22С1/03. (2012).

Google Scholar

[8] XIZHU GAO, Aluminium alloy solution refined chlorine-free slag remover, China Patent CN102644002, IPC С22С1/06. (2012).

Google Scholar

[9] N.I. Kolobnev, L.B. Ber, L.B. Hohlatova, D.K. Ryabov, Structure, properties and applications of alloys of Al-Mg-Si-(Cu) system, Metal Science and Heat Treatment, 9 (2011) 40-45.

DOI: 10.1007/s11041-012-9412-8

Google Scholar

[10] N.A. Belov, V.D. Belov, A.N. Alabin, S.S. Mishurov, Heat resistant cast aluminum alloy, Russian Federation Patent 2478131 IPC С22С21/06. (2013).

Google Scholar

[11] V.V. Zaharov, Joint alloying aluminum alloys with scandium and zirconium, Metal Science and Heat Treatment, 6 (2014) 3-8.

Google Scholar

[12] E.G. Demyanenko, I.P. Ророv, Study of Thermal Resistance and Mechanical Properties of Thin Sheets of Low-Alloyed Aluminum Al-Cu-Mn and Al-Mg-Si Alloys, Maerials Science Forum, 870 (2016) 95-100.

DOI: 10.4028/www.scientific.net/msf.870.95

Google Scholar

[13] S.Y. Shevchenko, The effect of electromagnetic stirring during solidification on the structure of thixo-blanks from cast aluminum alloys, Russian Journal of Non-Ferrous Metals, 12 (2013) 24-29.

Google Scholar

[14] V.A. Glouschenkov, A. Ju. Igolkin, D.G. Chernikov, V.I. Nikitin, B.V. Vyalov, Multi-phases and multi-components materials under dynamic loading: Materials of 10th European Mechanics of Materials Conference, Kazimierz Dolny, Poland, 2007, pp.479-485.

Google Scholar

[15] V.A. Glouschenkov, D.G. Chernikov, V.I. Nikitin, K.V. Nikitin, On the effects of pulsed magnetic fields on melts, Metallurgia Mashinostroyeniya (Metallurgy of Machinery Building), 4 (2012) 47-50.

Google Scholar

[16] K.H. Mar, Electromagnetic launch technology: the promise and the problems, IEEE Transactions on Magnetics, 1 (1989) 17-19.

Google Scholar

[17] V. Wegner, F. Zamet, Electromagnetic acceleration activities at the French-German Research Institute Saint-Louis, IEEE Transactions on Magnetics, 1 (1985) 587-590.

DOI: 10.1109/20.22605

Google Scholar

[18] D. Rodger,T. Karaguler, Leonard PJ. Dig, A formulation for 3D moving conductor eddy current problems, Intermag'89: Int. Magn. Conf. New York, 1989, P. 4D8.

DOI: 10.1109/intmag.1989.690339

Google Scholar

[19] F.B. Grechnikov, E.G. Demyanenko, I.P. Popov, Development of technology for obtaining aluminium alloys of high strength and high electrical conductivity, Russian Journal of Non-Ferrous Metals, 6 (2014) 17-21.

Google Scholar

[20] A.M. Bibikov, F.V. Grechnikov, G.E. Goldbukht, E.G. Demyanenko, I.P. Popov, Principles of alloying deformable nanostructured conductor aluminum alloys, Metallurgia Mashinostroyeniya (Metallurgy of Machinery Building), 5 (2013) 9-14.

Google Scholar

[21] L. Gherardini, S. Radel, B. Devcic-Kuhar, E. Benes, A new ultrasound-based cell immobilisation technique Proc. Forum Acusticum, 2002, Sevilla< Spain, Special Session PHA-01: Acoustics of Dispersed Particulate Matter.

Google Scholar

[22] J.P. Mazzoccoli D.L. Feke, H. Baskaran, P.N. Pintauro, Development of multilayered cell-hydrogel composites using an acoustic focusing technique, Biotechnol Prog. 26 (2010) No. 2, 600-605.

DOI: 10.1002/btpr.332

Google Scholar

[23] V.I. Nikitin, A.D. Garin, O.A. Garin, Use of АК9М alloy in the aggregates production, Liteinoye Proizvodstvo (Foundry. Technologies and Equipment), 10 (2000) 10-14.

Google Scholar