Structural Aspects Revealed by X-Ray Diffraction for Aluminum Alloys 2024 Type

Article Preview

Abstract:

This paper presents experimental results revealed on the samples type 2024 aluminum alloy used in aeronautics. Adequate characterization of 2024 aluminum alloys with special destination (aviation) was achieved by combined investigations:(i) wet chemical analysis, (ii) spectrochemical analysis, (iii) X-ray diffraction and (iv) electron microscopy. The main conclusion that emerges from the investigations carried out on aluminum samples revealed that: (a) alloys fits in terms of composition with the standard specification for 2024, in all cases; (b) microstructure vary in fineness of grain, but meets the requirements of aviation rules; the investigated microstructures have been appreciated as adequate of aluminum alloys type "2024".

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sadki, M.L. Hattali, M. A. Bradai, R. Youne, N. Mesrati, Characterization and Modeling of the Mechanical Behavior of Aeronautical Alloy Based Composite, Universal Journal of Chemistry 4(1) (2016) 10-19.

DOI: 10.13189/ujc.2016.040102

Google Scholar

[2] P. Rambabu, N Eswara Prasad et all, Aluminium Alloy for Aerospace Application in: Prasad N.E. and Wanhill R.J.H. (Eds. ), Aerospace Materials and Material Technologies, Springer Science, Singapore, (2017), 29-52.

DOI: 10.1007/978-981-10-2134-3_2

Google Scholar

[3] I. Pencea, Bazele incercarilor spectrochimice de emisie optica prin scanteie si arc electric, Ed. Printech, Bucuresti, (2007).

Google Scholar

[4] Yashpal C.S. Jawalkar, Suman Kant, A Review on use of Aluminium Alloys in Aircraft Components, i-Manager's Journal on Material Science, 3(3) (2015) 33-38.

Google Scholar

[5] James C Williams, Edgar A Starke Jr., Progress in structural material for aerospace systems, Acta Materialia, 51(19) (2003) 5775–5799.

Google Scholar

[6] C.I. Crimu, B. Istrate; C. Munteanu, I. Antoniac, M.N. Matei, K. Earar, XRD and Microstructural analyses on biodegradable Mg alloys, Key Engineering Materials, 638, (2015) 79-84.

DOI: 10.4028/www.scientific.net/kem.638.79

Google Scholar

[7] Information on Law 608/Legea privind evaluarea conformitatii produselor /(2001).

Google Scholar

[8] Zainul Huda, Nur IskandarTaib , Tuan Zaharinie, Characterization of 2024-T3: An aerospace aluminum alloy, 113(2-3) (2009) 515-517.

DOI: 10.1016/j.matchemphys.2008.09.050

Google Scholar

[9] Information on SR EN ISO/CEI17025: 2005, www. asro. ro.

Google Scholar

[10] Tolga Dursun, Costas Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design (1980-2015), 56 (2014) 862-871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[11] I. Truţia, G. Ioniţă, S. Stănescu, Spectroscopie optică, atomică şi moleculară – Lucrări practice, Ed. Univ. Bucureşti, (2003).

Google Scholar

[12] J.S. Robinson, W. Redington, The influence of alloy composition on residual stresses in heat treated aluminium alloys, Materials Characterization 105 (2015) 47–55.

DOI: 10.1016/j.matchar.2015.04.017

Google Scholar

[13] Ewa Marcisz, Zbigniew Marciniak, Dariusz Rozumek, Ewald Macha, Fatigue Characteristic of Aluminium Alloy 2024 under Cyclic Bending with the Controlled Energy Parameter, Key Engineering Materials, 592-593, (2014), 684-687.

DOI: 10.4028/www.scientific.net/kem.592-593.684

Google Scholar

[14] P.D. Puncreobutr, K.M. Lee, T. Kareh, J.L. Connolley, A.B. Fife, Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys, Acta Materialia, 68 (2014) 42–51.

DOI: 10.1016/j.actamat.2014.01.007

Google Scholar