[1]
S. Sahoo, U. Dash, S.K.S. Parashar and S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepare by high-energy ball milling, Journal of Advanced Ceramics (2013), 2(3), 291-300.
DOI: 10.1007/s40145-013-0075-8
Google Scholar
[2]
C.L. Huang and M.H. Weng, Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature. Materials Research Bulletin 36 (2001), 2741-2750.
DOI: 10.1016/s0025-5408(01)00752-8
Google Scholar
[3]
H. Su and S. Wu, Studies on the (Mg, Zn)TiO3-CaTiO3 microwave dielectric ceramics. Materials Letters 59 (2005), 2337-2341.
DOI: 10.1016/j.matlet.2005.01.087
Google Scholar
[4]
O. Mondal, M. Pal, R. Singh, D. Sen, D. Mazumder and M. Pal, Influence of doping on crystal growth, structure and optical properties of nanocrystalline CaTiO3: a case study using small-angle neutron scattering, Journal of Applied Crystallography. (2015).
DOI: 10.1107/s1600576715006664
Google Scholar
[5]
Y.L. Chai, Y.S. Chang, K.T. Liu and L.G. Teoh, The structure and PTCR effects of Mg-doped ZnTiO3 ceramics. Ceramics International 38. (2012), 3613-3618.
DOI: 10.1016/j.ceramint.2011.12.078
Google Scholar
[6]
W. Luan, L. Gao and J. Guo, Size effect on dielectric properties of fine-grained BaTiO3 ceramics, Ceramics International 25. (1999) 727-729.
DOI: 10.1016/s0272-8842(99)00009-7
Google Scholar
[7]
P. Zheng, J.L. Zhang, Y.Q. Tan and C.L. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics, Acta Materialia 60(13–14), (2012), 5022-5030.
DOI: 10.1016/j.actamat.2012.06.015
Google Scholar
[8]
Y. Sakabe, N. Wada and Y. Hamaji, Grain size effects on dielectric properties and Crystal structure of fine-grained BaTiO3 ceramics. Journal of the Korean Physical Society, Vol. 32, pp. S260-S264, Feb (1998).
Google Scholar
[9]
B.W. Lee and K.H. Auh, Effect of grain size and mechanical processing on the dielectric properties of BaTiO3. J. Mater. Res., Vol. 10, No. 6, Jun (1995).
Google Scholar
[10]
Y.S. Chang, Y.H. Chang, I.G. Chen and G.J. Chen, Synthesis and characterization of zinc titanate doped with magnesium. Solid State Communications 128. (2003), 203-208.
DOI: 10.1016/s0038-1098(03)00527-1
Google Scholar
[11]
T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino and K. Niihara, Effect of MgO doping on the phase transformations of BaTiO3. Journal of the American Ceramic Society 83.
DOI: 10.1111/j.1151-2916.2000.tb01156.x
Google Scholar
[1]
(2006), 107-112.
Google Scholar
[12]
Y. Li, X.P. Gao, G.R. Li, G.L. Pan, T.Y. Yan and H.Y. Zhu, Titanate nanofiber reactivity: fabrication of MTiO3 (M = Ca, Sr and Ba) perovskite oxides. J. Phys. Chem. (2009), C113: 4386-4394.
DOI: 10.1021/jp810805f
Google Scholar
[13]
S. Manafi and M. Jafarian, Synthesis of perovskite CaTiO3 nanopowders with different morphologies by mechanical alloying without heat treatment. International Journal of Physical Sciences. Vol. 8(23), (2013), pp.1277-1283.
Google Scholar
[14]
O. Jongprateep, A. Chansuriya and S. Rugthaichareoncheep, Composition and particle size of REBa2Cu3O7-x superconductor powders synthesized by solid state reactions. Suranaree. J. Sci. Technol. 19(3), (2013), 155-160.
Google Scholar
[15]
O. Jongprateep and J. Palomas, Effects of Mg addition and sintering temperatures on chemical composition, microstructures, densities and dielectric properties of strontium titanate. Ceramics International 41, (2015), 563-568.
DOI: 10.1016/j.ceramint.2015.03.192
Google Scholar
[16]
J.S. Park and Y.H. Han., Effects of MgO coating on microstructure and dielectric properties of BaTiO3. Journal of the European Ceramic Society 27. (2007), 1077-1082.
DOI: 10.1016/j.jeurceramsoc.2006.05.073
Google Scholar
[17]
S.H. Yoon, C.A. Randall and K.H. Hur, Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. Journal of the American Ceramic Society 92.
DOI: 10.1111/j.1551-2916.2009.03305.x
Google Scholar
[12]
(2009), 2944-2952.
Google Scholar
[18]
C.L. Huang, C.L. Pan and S.J. Shium, 2002 Liquid phase of MgTiO3 – CaTiO3 microwave dielectric ceramics. Materials Chemistry and Physics 78 (2002), 111-115.
DOI: 10.1016/s0254-0584(02)00311-5
Google Scholar
[19]
S. Penn, N. Alford, A. Templeton, X. Wang, M. Reece and K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc., 80(7), (1996), 1885-88.
DOI: 10.1111/j.1151-2916.1997.tb03066.x
Google Scholar
[20]
K. Wakino, A new proposal on mixing rule of the dielectric constant of mixture. IEEE (1995).
Google Scholar