[1]
Departmental Building Code 82-80, Recommendations for the design of molten and highly-movable concrete mixtures for cast-in-situ and precast reinforced concrete structures, Ministry of Defense of the USSR, Moscow, (1982).
Google Scholar
[2]
Supplement to the Departmental Building Code 82-80, Manual for the selection of compositions and manufacturing technology of precast reinforces concrete structures from the fine-grained high-strength expanded clay concretes, Ministry of Defense of the USSR, Moscow, (1982).
Google Scholar
[3]
H. Okamura, M. Ouchi, Self-Compacting Concrete, J. Adv. Concr. Technol. 1(1) (2003) 5-15.
Google Scholar
[4]
N. Krishna Murthy, A. V. Narasimha Rao, I. Vand Ramana Reddy, M. Vijaya Sekhar Reddy, Mix Design Procedure for Self Compacting Concrete, IOSR J. Eng. 2(9) (2012) 33-41.
Google Scholar
[5]
T. Ponikiewski, J. Gołaszewski, The Rheological and Mechanical Properties of High-performance Self-Compacting Concrete with High-Calcium Fly Ash, Materials of the Concrete and Concrete Structures 2013 – 6th International Conference, Slovakia, Proc. Eng. 65 (2013).
DOI: 10.1016/j.proeng.2013.09.007
Google Scholar
[6]
O. R. Khaleel, S. A. Al-Mishhadani, H. Abdul Razak, The Effect of Coarse Aggregate on Fresh and Hardened Properties of Self-Compacting Concrete (SCC), Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction – EASEC12, Proc. Eng. 14 (2011).
DOI: 10.1016/j.proeng.2011.07.102
Google Scholar
[7]
Y. A. Alexandrov, Selection of raw materials for the production of self-compacting concretes, Tekhnologiya Betonov (Concrete Technology). 3-4 (2011) 18-19.
Google Scholar
[8]
B. Benabed, E. H. Kadri, L. Azzouz, S. Kenai, Properties of self- compacting mortar made with various types of sand, Cem. Concr. Compos. 34(10) (2012) 1167-1173.
DOI: 10.1016/j.cemconcomp.2012.07.007
Google Scholar
[9]
K. K. Sideris, C. Tassos, A. Chatzopoulos, Production of Durable Self-Compacting Concrete Using Ladle Furnace Slag (LFS) as Filler Material, Materials of the 7th Scientific-Technical Conference on Material Problems in Civil Engineering MATBUD'2015, Proc. Eng. 108 (2015).
DOI: 10.1016/j.proeng.2015.06.184
Google Scholar
[10]
B. Herbudiman, A. Mulyawan Saptaji, Self-Compacting Concrete with Recycled Traditional Roof Tile Powder, Materials of the 2nd International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE), Procedia Engineering. 54 (2013).
DOI: 10.1016/j.proeng.2013.03.074
Google Scholar
[11]
A. I. Shesternin, M. O. Korovkin, N. A. Eroshkina, Fundamentals of self-compacting concrete technology, Molodoi Uchenyi (Young Scientist), 6 (2015) 226-228.
Google Scholar
[12]
Y. V. Nikolenko, M. M. Manaeva, N. A. Stashevskaya, About the technology of concrete works in cast-in-situ building construction, Bulletin of the RUDN University, Series: Engineering Studies. 41 (2014) 84-89.
Google Scholar
[13]
A. P. Svintsov, N. K. Svintsova, Y. V. Nikolenko, L. K. Gladchenko, The device for thermal treatment of concrete in cast-in-situ structures, Patent of the Russian Federation No. 113287. (2012).
Google Scholar
[14]
A. P. Svintsov, Y. V. Nikolenko, N. N. Patrakhaltsev, V. N. Ivanov, Improving the technology of concrete work in the cast-in-situ building construction, Stroitel'nye Materialy (Construction Materials), 1 (2012) 28-31.
Google Scholar
[15]
G. Bumanis, N. Toropovs, L. Dembovska, D. Bajare, A. Korjakins, The Effect of Heat Treatment on the Properties of Ultra High Strength Concrete, Proceedings of the 10th International Scientific and Practical Conference, Rezekne, Latvia. 1 (2015).
DOI: 10.17770/etr2015vol1.209
Google Scholar
[16]
C. Sivathanu Pillai, A. R. Santhakumar, S. Chandrasekaran, S. Viswanathan, R. Mathiyarasu, J. Ashok Kumar, R. Preetha, B. Venkatraman, Effect of heat treatment on neutron attenuation characteristics of high density concretes (HDC), Progress Nuclear Energy. 93 (2016).
DOI: 10.1016/j.pnucene.2016.08.003
Google Scholar
[17]
K. Pandurangan, A. Dayanithy, S. Om Prakash, Influence of treatment methods on the bond strength of recycled aggregate concrete, Construct. Build. Mater. 120 (2016) 212-221.
DOI: 10.1016/j.conbuildmat.2016.05.093
Google Scholar
[18]
H. Khaleel Alwan Al-Bayati, P. Kumar Das, S. L. Tighe, H. Baaj, Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate, Construct. Build. Mater. 112 (2016) 284-298.
DOI: 10.1016/j.conbuildmat.2016.02.176
Google Scholar
[19]
Z. H. Shui, D. X. Xuan, H. W. Wan, B. B. Cao, Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment, Constr. Build. Mater. 22(8) (2008) 1723-1729.
DOI: 10.1016/j.conbuildmat.2007.05.012
Google Scholar
[20]
R. Derabla, M. Larbi Benmalek, Characterization of heat-treated self-compacting concrete containing mineral admixtures at early age and in the long term, Constr. Build. Mater. 66 (2014) 787-794.
DOI: 10.1016/j.conbuildmat.2014.06.029
Google Scholar
[21]
A. A. Adamenkov, M. G. Kudryashov, N. F. Korenyako, A. E. Novitskii, V. I. Grishin, Effective Heat-Treatment Regimes for Large Hollow Concrete Blocks, Hydrotech. Constr. 1(2) (1967) 116-119.
DOI: 10.1007/bf02379127
Google Scholar