[1]
B. F. Brown, Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys. Washington, D.C.: Naval Research Laboratory, (1972).
Google Scholar
[2]
S. Baragetti, R. Gerosa, and F. Villa, WC/C Coating Protection Effects on 7075-T6 Fatigue Strength in an Aggressive Environment, Procedia Eng., vol. 74, p.33–36, (2014).
DOI: 10.1016/j.proeng.2014.06.219
Google Scholar
[3]
J. Biehler, H. Hoche, M. Oechsner, Corrosion properties of polished and shot-peened austenitic stainless steel 304L and 316L with and without plasma nitriding.
DOI: 10.1016/j.surfcoat.2017.01.050
Google Scholar
[4]
S. Baragetti, M. Guagliano, L. Vergani, A Numerical Procedure for Shot Peening Optimisation by Means of Non Dimensional Factors, International Journal of Materials & Product Technology, Inderscience Enterprises Ltd, Genève, Switzerland, Vol. 15, Nos. 1/2, 2000, pp.91-103.
DOI: 10.1504/ijmpt.2000.001238
Google Scholar
[5]
S. Baragetti, Fatigue resistance of steel and titanium PVD coated spur gears, International Journal of Fatigue, published by Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington, Oxford, England, Vol. 29, 2007, p.1893-(1903).
DOI: 10.1016/j.ijfatigue.2006.11.005
Google Scholar
[6]
S. Baragetti, F. Tordini, Fatigue resistance of PECVD coated steel alloy, International Journal of Fatigue, published by Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington, Oxford, England, Vol. 29, 2007, pp.1832-1838.
DOI: 10.1016/j.ijfatigue.2007.02.008
Google Scholar
[7]
S. Baragetti, L. Lusvarghi, F. Pighetti Mantini, F. Tordini, Fatigue Behaviour of Notched PVD-coated Titanium Components, Key Engineering Materials, Trans Tech Publications Inc, Zurich, Switzerland, Vols 348-349, pp.313-316, (2007).
DOI: 10.4028/www.scientific.net/kem.348-349.313
Google Scholar
[8]
B. F. Brown, Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys. Washington, D.C.: Naval Research Laboratory, (1972).
Google Scholar
[9]
S. Baragetti, Corrosion fatigue behaviour of Ti-6Al-4V in methanol environment, Surface and Interface Analysis, 45, 10, (2013).
DOI: 10.1002/sia.5203
Google Scholar
[10]
G. Silva, B. Rivolta, R. Gerosa, and U. Derudi, Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C, J. Mater. Eng. Perform., vol. 22, no. 1, p.210–214, (2013).
DOI: 10.1007/s11665-012-0221-4
Google Scholar
[11]
S. Baragetti, R. Gerosa, and F. Villa, Fatigue Behaviour of Thin Coated Al 7075 Alloy with Low Temperature PVD Coatings, Key Eng. Mater., vol. 577–578, p.221–224, (2013).
DOI: 10.4028/www.scientific.net/kem.577-578.221
Google Scholar
[12]
Lafer S. p.A., Lafer website, 2016. [Online]. Available: www. lafer. eu. [Accessed: 20-Jan-(2016).
Google Scholar
[13]
S. Baragetti, R. Gerosa, and F. Villa, Step loading corrosion fatigue testing of 7075-T6 WC/C coated specimens in air and methanol, Eng. Fract. Mech. - Press, no. http: /dx. doi. org/10. 1016/j. engfracmech. 2016. 02. 027, (2016).
DOI: 10.1016/j.engfracmech.2016.02.027
Google Scholar
[14]
VV AA, ISO 1143: 2010 Standard. Metallic materials — Rotating bar bending fatigue testing., (2010).
Google Scholar
[15]
American Society for Testing and Materials, ASTM E 739–91: Standard Practice fo Statistical Analysis of Linear or Linearized Stress Life (S-N) and Strain Life (ε- N) (1991).
Google Scholar
[16]
Baragetti, S., Gerosa, R. & Villa, F., 2015. Fatigue behaviour of DLC coated Al 7075-T6 alloy in an aggressive mixture. Key Engineering Materials, 627, p.81–84.
DOI: 10.4028/www.scientific.net/kem.627.81
Google Scholar
[17]
Baragetti, S., Gerosa, R. & Villa, F., 2016a. Light Alloys Structural Behaviour in Severe Environmental Conditions. Key Engineering Materials, 665, p.37–40. Available at: http: /www. scientific. net/KEM. 665. 37.
DOI: 10.4028/www.scientific.net/kem.665.37
Google Scholar