Preliminary Study of the Use of a Secondary Lead Smelting Slag as an Addition to Portland Cement

Article Preview

Abstract:

In this work, the preliminary study about the use of secondary lead smelting slag (SLSS) as an addition to Portland cement is presented. SLSS is a waste from a Colombian secondary lead smelter. The chemical, physical and mineralogical characteristics of the raw materials were evaluated by X-ray fluorescence, particle size and X-ray diffraction. To assess the SLSS pozzolanic activity, the ASTM C618 standards were used. Additionally, cement pastes added with SLSS as Portland cement replacement in proportions of 0, 5, 10, 20 and 30% were prepared, to study the hydration process at 7, 14 and 28 of curing times. To determine the hydration products the technique of X-ray diffraction was used. Furthermore, the environmental test TCLP (Toxicity Characteristic Leaching Procedure) was performed in pastes with 28 days of curing time. Results showed that SLSS reported an index of pozzolanic activity of 87%, this value meets the standard (greater than 75%). The hydration process showed that since early curing time the waste presented a good reactivity. TCLP results satisfied the environmental standards. The outcomes showed that this waste could be used as a partial replacement of Portland cement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-180

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ATSDR, Agency for Toxic Substances and Disease Registry. 2011: Substance Index for Tox FAQs. United States, Information on http/www. atsdr. cdc. gov/toxfaqs/index. asp.

DOI: 10.4135/9781412963855.n24

Google Scholar

[2] A. Lassin, et al., Reactivity of waste generated during lead recycling: an integrated study, J. of Haz. Mat. 139 (3)(2007) 430-437.

Google Scholar

[3] U.S. Geological Survey, Mineral commodity summaries, United States: Geological Survey, (2008).

Google Scholar

[4] D. Rodríguez - López, Lead slags leachability characterization: a critical study with different laboratory assays, Proceedings of the Third Regional Forum of energy and the Environment, Brasil, (1999).

Google Scholar

[5] S. Hreglich, et al., Inertisation of slags from the treatment of end of life automotive batteries and their reuse in the production of heavy clay products with soundproofing properties, Glass Tech.: European J. of Glass Science and Technology Part A. 49 (6) (2008).

Google Scholar

[6] A. Smaniotto, et al., Qualitative lead extraction from recycled lead-acid batteries slag, J. of Haz. Mat. 172 (2009) 1677-1680.

DOI: 10.1016/j.jhazmat.2009.07.026

Google Scholar

[7] Y. Shu, Ch. Ma, L. Zhu, H. Chen, Leaching of lead slag component by sodium chloride and diluted nitric acid and synthesis of ultrafine lead oxide powders, J. of Pow. Sour. 281 (2015) 219-226.

DOI: 10.1016/j.jpowsour.2015.01.181

Google Scholar

[8] B. Coya, , E. Marañon, H. Sastre, Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries, Res. Cons. and recyc. 29 (2000) 291-300.

DOI: 10.1016/s0921-3449(00)00054-9

Google Scholar

[9] M. Frías, M. Sánchez de Rojas, O. Rodríguez,: Novedades en el reciclado de materiales en el sector de la construcción: Adiciones puzolánicas II, Jornadas de investigación en Construcción, Madrid, 2008, 1415-1424.

DOI: 10.4067/s0718-915x2012000300001

Google Scholar

[10] M. D. Lagrega, P. L. Buckingham, J. C. EVANS, Hazardous wastes management, New Jersey, (1994).

Google Scholar

[11] G. De Angelis, et al, Reuse of residues arising from lead batteries recycle. A feasibility study, J. Was. Man. 22 (2002) 925-930.

DOI: 10.1016/s0956-053x(02)00082-x

Google Scholar

[12] M. Penpolcharoen, Utilization of secondary slag as construction material, Cem. and Conc. Res. 35 (2005) 1050-1055.

Google Scholar

[13] N. Saikia, et al, Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar, J. of Haz. Mat. 154 (2008) 766-777.

DOI: 10.1016/j.jhazmat.2007.10.093

Google Scholar

[14] R. Mejía de Gutiérrez, P. Rodríguez, Durabilidad y corrosión en materiales cementicios, Costa Rica: CYTED, (1999).

Google Scholar

[15] F. Massazza, Pozzolanic Cements, Cem. and Conc. Comp. (1993) 185-214.

Google Scholar

[16] L. Gurtubay, G. Gallastegui, A. Elías, A. Barona, S. Fernandez, Evaluación de la lixiviación natural de una escoria negra de acería sometida a un proceso de envejecimiento acelerado por carbonatación, XVI Congreso Internacional de Ingeniería de Proyectos, Valencia, (2012).

DOI: 10.26439/ciis2019.5502

Google Scholar

[17] C. R. Vargas, C. M. Cifuentes, Tratamiento hidrometalúrgico para la Recuperacion de plomo desde borras anódicas con EDTA. VIII Simposio Internacional de Qualidade Ambiental: Porto Alegre, (2012).

Google Scholar