Remarks on Seismic Design Rules of EC8 for Inverted-V CBFs

Article Preview

Abstract:

Chevron concentrically braced frames (C-CBFs) are expected to provide limited ductility in the framework of Eurocode 8: differently from North American codes, lower values of behavior factors are recommended by EN 1998 for C-CBFs than for other concentric bracing configurations (namely diagonal and cross bracings). The research presented in this paper is aimed at revising the design rules and requirements provided for by EN 1998-1 for C-CBFs in order to improve the ductility and the dissipative capacity of this structural system. The proposed design criteria are validated by means of nonlinear dynamic analyses performed on a study case. The results confirm the effectiveness of developed design procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1147-1154

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] American Institute of Steel Construction, Inc. (AISC). (2016). Seismic Provisions for Structural Steel Buildings. ANSI/AISC Standard 341-16. AISC, Chicago, Illinois.

DOI: 10.1201/b11248-16

Google Scholar

[2] CSA. 2014. Design of Steel Structures, CSA-S16-14, Canadian Standards Association, Toronto, ON.

Google Scholar

[3] EN 1998-1-1. Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. CEN; (2005).

DOI: 10.3403/03244372

Google Scholar

[4] I.F. Khatib, S.A. Mahin, K.S. Pister. Seismic behavior of concentrically braced steel frames. Report UCB/EERC-88/01, Earthquake Engineering Research Center, University of California, Berkeley, CA. (1988).

Google Scholar

[5] R. Tremblay, N. Robert. Seismic design of low- and medium-rise chevron braced steel frames. Canadian Journal of Civil Engineering, 27: 1192–1206. (2000).

DOI: 10.1139/l00-061

Google Scholar

[6] R. Tremblay, N. Robert. Seismic performance of low- and medium-rise chevron braced steel frames. Canadian Journal of Civil Engineering, 28: 699-714. (2001).

DOI: 10.1139/l01-038

Google Scholar

[7] J. Kim, H. Choi. Response modification factor of Chevron-Braced Frames. Engineering Structures, 27: 285-300. (2005).

DOI: 10.1016/j.engstruct.2004.10.009

Google Scholar

[8] T. Fukuta, I. Nishiyama , H. Yamanouchi , B. Kato. Seismic performance of steel frames with inverted V braces. Journal of Structural Engineering, ASCE, 115(8): 2016- 2028. (1989).

DOI: 10.1061/(asce)0733-9445(1989)115:8(2016)

Google Scholar

[9] J. Shen, R. Wen, B. Akbas, B. Doran, E. Uckan. Seismic demand on brace-intersected beams in two-story X-braced frames. Engineering Structures, 76: 295-312 (2014).

DOI: 10.1016/j.engstruct.2014.07.022

Google Scholar

[10] J. Shen, R. Wen, B. Akbas. Mechanisms in Two-story X-braced Frames. Journal of Constructional Steel Research, 106: 258-277. (2015).

DOI: 10.1016/j.jcsr.2014.12.014

Google Scholar

[11] M. D'Aniello, S. Costanzo, R. Landolfo. The influence of beam stiffness on seismic response of chevron concentric bracings. Journal of Constructional Steel Research, Vol. 112, p.305–324, (2015).

DOI: 10.1016/j.jcsr.2015.05.021

Google Scholar

[12] S. Costanzo, M. D'Aniello, R. Landolfo. Critical review of seismic design criteria for chevron concentrically braced frames: the role of the brace-intercepted beam. Ingegneria Sismica: International Journal of Earthquake Engineering, Vol. 33, Issue 1-2, pp.72-89, (2015).

DOI: 10.1016/j.soildyn.2018.06.001

Google Scholar

[13] S. Costanzo, M. D'Aniello, R. Landolfo. Seismic design criteria for chevron CBFs: European vs North American codes (part-1), Journal of Constructional Steel Research 2017; 135: 83–96; DOI: http: /dx. doi. org/10. 1016/j. jcsr. 2017. 04. 018.

DOI: 10.1016/j.jcsr.2017.04.018

Google Scholar

[14] S. Costanzo, R. Landolfo. Concentrically braced frames: European vs. North-American seismic design provisions. The Open Civil Engineering Journal 2017; 11, (Suppl 1: M11) 453-463.

DOI: 10.2174/1874149501711010453

Google Scholar

[15] S. Costanzo, M. D'Aniello, R. Landolfo. Seismic design criteria for chevron CBFs: Proposals for the next EC8 (part-2), Journal of Constructional Steel Research 2017; 138: 17–37; DOI: http: /dx. doi. org/10. 1016/j. jcsr. 2017. 06. 028.

DOI: 10.1016/j.jcsr.2017.06.028

Google Scholar

[16] E. M. Marino, M. Nakashima. Seismic performance and new procedure for chevron braced frames. Earthquake Engineering and Structural Dynamics 35, 422-452 (2006).

DOI: 10.1002/eqe.539

Google Scholar

[17] E. Marino. A unified approach for the design of high ductility steel frames with concentric braces in the framework of Eurocode 8. Earthquake Engineering & Structural dynamics 43: 97-118. (2014).

DOI: 10.1002/eqe.2334

Google Scholar

[18] M. Bosco, A. Ghersi, E.M. Marino, P.P. Rossi. A capacity design procedure for columns of steel structures with diagonals braces. Open Construction and Building Technology Journal 8, 196-207. (2014).

DOI: 10.2174/1874836801408010196

Google Scholar

[19] P. P Rossi, G. Quaceci. A design procedure for suspended zipper-braced frames in the framework of Eurocode 8. Earthquake Engineering & Structural Dynamics. Published on-line. DOI: 10. 1002/eqe. 2889. (2017).

DOI: 10.1002/eqe.2889

Google Scholar

[20] M. Bosco, G. Brandonisio, E.M. Marino, E. Mele, A. De Luca A. Ω* method: An alternative to Eurocode 8 procedure for seismic design of X-CBFs. Journal of Constructional Steel Research, 134: 135–147. (2017).

DOI: 10.1016/j.jcsr.2017.03.014

Google Scholar

[21] A. Longo, R. Montuori, V. Piluso. Plastic design of seismic Resistant V-Braced frames. Journal of Earthquake Engineering 12(8): 1246-1266 (2008).

DOI: 10.1080/13632460802211867

Google Scholar

[22] A. Longo, R. Montuori, V. Piluso. Seismic reliability of V-braced frames: Influence of design methodologies. Earthquake Engineering and Structural Dynamics 38, 1587-1608 (2009).

DOI: 10.1002/eqe.919

Google Scholar

[23] M.T. Giugliano, A. Longo. R. Montuori, V. Piluso. Seismic reliability of traditional and innovative concentrically braced frames. Earthquake Engineering and Structural Dynamics, 40(13): 1455-1474. (2011).

DOI: 10.1002/eqe.1098

Google Scholar

[24] R-Landolfo (Ed. ). Assessment of EC8 provisions for seismic design of steel structures. Technical Committee 13 – Seismic Design, No 131/2013. ECCS – European Convention for Constructional Steelwork; (2013).

Google Scholar

[25] R. Landolfo. The activities of the ECCS-TC13 seismic committee: bridging the gap between research and standards. Proc. of 8th International Conference on Behavior of Steel Structures in Seismic Areas, Shanghai, China, July 1-3. (2015).

Google Scholar

[26] EN 1993: 1-1, Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings. CEN; (2005).

Google Scholar

[27] S. Akka, M.A. Sandıkkaya , M. Şenyurt, A Azari Sisi., Ay B.Ö., P. Traversa, J. Douglas, F. Cotton, L. Luzi, B. Hernandez, S. Gode, Reference database for seismic groundmotion in Europe (RESORCE) Bulletin of earthquake engineering 12 (1) (2014).

DOI: 10.1007/s10518-013-9506-8

Google Scholar

[28] L.A. Fülöp Selection of earthquake records for the parametric analysis, Research report VTT-R-03238-10, VTT, Espoo. (2010).

Google Scholar

[29] Seismosoft SeismoStruct - A computer program for static and dynamic nonlinear analysis of framed structures. Available from URL: www. seismosoft. com. (2011).

Google Scholar

[30] M. Menegotto, P. Pinto. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending, Symposium on the Resistance and UltimatDeformability of Structures Acted on by Well Defined Repeated Loads. (1973).

Google Scholar

[31] M. D'Aniello, G. La Manna Ambrosino, F. Portioli, R. Landolfo. Modelling aspects of the seismic response of steel concentric braced frames Steel & Composite Structures, An International Journal 15(5): 539-566 (2013).

DOI: 10.12989/scs.2013.15.5.539

Google Scholar

[32] M. D'Aniello, G. La Manna Ambrosino, F. Portioli, R. Landolfo. The influence of out-of-straightness imperfection in Physical-Theory models of bracing members on seismic performance assessment of concentric braced structures. The Structural Design of Tall and Special Buildings 24(3), 176-197, (2015).

DOI: 10.1002/tal.1160

Google Scholar