[1]
G. C. Lee and E. Lee, Local buckling of steel sections under cyclic loading, Journal of Constructional Steel Research, vol. 29, no. 1, pp.55-70, (1994).
DOI: 10.1016/0143-974x(94)90056-6
Google Scholar
[2]
T. Takeda, M. Sozen and N. Nielsen, Reinforced Concrete Response to Simulated Earthquakes, Journal of the Structural Division, vol. 96, no. 12, pp.2557-2573, (1970).
DOI: 10.1061/jsdeag.0002765
Google Scholar
[3]
R. Bouc, Forced vibration of mechanical systems with hysteresis, in Proceedings of the fourth conference on non-linear oscillation, Prague, Czechoslovakia, (1967).
Google Scholar
[4]
Y. -K. Wen, Method for random vibration of hysteretic systems, ASCE J Eng Mech Div, vol. 102, no. 2, pp.249-263, (1976).
DOI: 10.1061/jmcea3.0002106
Google Scholar
[5]
W. Ramberg and W. Osgood, Description of stress–strain curves by three parameters, National Advisory Committee on Aeronautics, Technical Note 902, (1943).
Google Scholar
[6]
R. M. Richard and B. J. Abbott, Versatile Elasto-Plastic Stress-Strain Formula, Journal of the Engineering Mechanics Division, vol. 101, no. 4, pp.511-515, (1975).
DOI: 10.1061/jmcea3.0002047
Google Scholar
[7]
R. K. Dowell, F. Seible and E. L. Wilson, Pivot hysteresis model for reinforced concrete members, ACI Structural Journal, vol. 95, no. 5, pp.607-617, (1998).
DOI: 10.14359/575
Google Scholar
[8]
M. V. Sivaselvan and A. M. Reinhorn, Hysteretic models for deteriorating inelastic structures, J. Eng. Mech., vol. 126, no. 6, pp.633-640, (2000).
DOI: 10.1061/(asce)0733-9399(2000)126:6(633)
Google Scholar
[9]
L. F. Ibarra, R. A. Medina and H. Krawinkler, Hysteretic models that incorporate strength and stiffness deterioration, Earthquake Engng Struct. Dyn., vol. 34, pp.1489-1511, (2005).
DOI: 10.1002/eqe.495
Google Scholar
[10]
American Institute of Steel Construction, ANSI/AISC 341-10, AISC, (2010).
Google Scholar
[11]
C. Chisari, A. B. Francavilla, M. Latour, V. Piluso, G. Rizzano and C. Amadio, Critical issues in parameter calibration of cyclic models for steel members, Engineering Structures, vol. 132, pp.123-138, (2017).
DOI: 10.1016/j.engstruct.2016.11.030
Google Scholar
[12]
K. Miettinen, Nonlinear Multiobjective Optimization, Springer, (1999).
Google Scholar
[13]
J. H. Holland, Adaptation in natural and artificial systems. an introductory analysis with applications to biology, control and artificial intelligence, The University of Michigan Press, Ann Arbor, USA, (1975).
Google Scholar
[14]
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.182-197, (2002).
DOI: 10.1109/4235.996017
Google Scholar
[15]
C. Chisari, G. Rizzano and C. Amadio, MultiCal - Multi-objective calibration of hysteretic models, July 2017. [Online]. Available: www. multical. unisa. it. [Accessed 29 August 2017].
Google Scholar
[16]
M. D'Aniello, R. Landolfo, V. Piluso and G. Rizzano, Ultimate behavior of steel beams under non-uniform bending, Journal of Constructional Steel Research, vol. 78, pp.144-158, (2012).
DOI: 10.1016/j.jcsr.2012.07.003
Google Scholar
[17]
OpenSees, Open System for Earthquake Engineering Simulation, 2010. [Online]. Available: http: /opensees. berkeley. edu/wiki/index. php/Main_Page. [Accessed 12 October 2016].
Google Scholar
[18]
Seismosoft, SeismoStruct v7. 0 – A computer program for static and dynamic nonlinear analysis of framed structures, 2014. [Online]. Available: http: /www. seismosoft. com. [Accessed 13 April 2016].
Google Scholar