[1]
A. Formisano, F.M. Mazzolani, G. De Matteis, Numerical analysis of slender steel shear panels for assessing design formulas, International Journal of Structural Stability and Dynamics 7(2) (2007) 273–294.
DOI: 10.1142/s0219455407002289
Google Scholar
[2]
M. Wang, W. Yang, Y. Shi, J. Xu, Seismic behaviors of steel plate shear wall structures with construction details and materials, Journal of Constructional Steel Research 107 (2015) 194–210.
DOI: 10.1016/j.jcsr.2015.01.007
Google Scholar
[3]
G. De Matteis, G. Sarracco, G. Brando, Experimental tests and optimization rules for steel perforated shear panels, Journal of Constructional Steel Research 123 (2016) 41-52.
DOI: 10.1016/j.jcsr.2016.04.025
Google Scholar
[4]
P. A. Timler, G. L. Kulak, Experimental study of steel plate shear walls, Structural Engineering Report. No. 114, Department of Civil Engineering, University of Alberta, Alberta, Canada, (1983).
Google Scholar
[5]
L. Di Sarno, A. S. Elnashai, Innovative strategies for seismic retrofitting of steel and composite frames. Journal of Progress in Structural Engineering and Materials 7 (3) (2005) 115-135.
DOI: 10.1002/pse.195
Google Scholar
[6]
L. Di Sarno, A. S. Elnashai, Bracing Systems for Seismic Retrofitting of Steel Frames. Journal of Constructional Steel Research 65 (2) (2009) 452-465.
DOI: 10.1016/j.jcsr.2008.02.013
Google Scholar
[7]
L. Di Sarno, G. Manfredi, Seismic Retrofitting with Buckling Restrained Braces: Application to An Existing Non-Ductile RC Framed Building, Soil Dynamics and Earthquake Engineering 30 (11) (2010) 1279-1297.
DOI: 10.1016/j.soildyn.2010.06.001
Google Scholar
[8]
L. Di Sarno, G. Manfredi, Experimental tests on full-scale RC unretrofitted frame and retrofitted with buckling restrained braces, Earthquake Engineering and Structural Dynamics 41(2) (2012) 315-333.
DOI: 10.1002/eqe.1131
Google Scholar
[9]
G. De Matteis, E.S. Mistakidis, A. Formisano, S.I. Tsirnovas, Seismic retrofitting of steel and concrete structures using low-yield strength shear panels, Proc. of the Final Conference of COST ACTION C12. Innsbruck, Austria, 20-22 January 2005, A.A. Balkema Publishers, Great Britain, ISBN 04 1536 609 7, pp.135-145, (2005).
DOI: 10.1201/9780203970843.ch14
Google Scholar
[10]
E. S., Mistakidis, G. De Matteis, A. Formisano, Low yield metal shear panels as an alternative for the seismic upgrading of concrete structures, Advances in Engineering Software 38 (2007) 626 - 636.
DOI: 10.1016/j.advengsoft.2006.08.043
Google Scholar
[11]
G. De Matteis, A. Formisano, F. M. Mazzolani, RC structures strengthened by metal shear panels: experimental and numerical analysis, 2008 Seismic Engineering Conference commemorating 1908 Messina and Reggio Calabria Earthquake, Proc. of the Int. Conf. MERCEA'08, Reggio Calabria, 8-11 July 2008, American Institute of Physics publisher, New York, ISBN 978-0-7354-0542-4, ISSN 0094-243X, Vol. 1, pp.27-34, (2008).
DOI: 10.1063/1.2963846
Google Scholar
[12]
A. Formisano, G. De Matteis, S. Panico, B. Calderoni, F. M. Mazzolani, Full-scale experimental study on the seismic upgrading of an existing R.C. frame by means of slender steel shear panels, Proc. of the International Conference in Metal Structures (ICMS '06). Poiana Brasov, 20-22 September 2006, Taylor & Francis Group plc, London, UK, ISBN 0-415-40817-2, pp.609-617, (2006).
DOI: 10.4203/ccp.85.73
Google Scholar
[13]
A. Formisano, G. De Matteis, S. Panico, F. M. Mazzolani, Full-scale test on existing RC frame reinforced with slender shear steel plates, Proc. of the 5th Int. Conf. on the Behaviour of Steel Structures in Seismic Areas (STESSA '06), Yokohama, 14-17 August 2006, Taylor & Francis Group plc, London, UK, pp.827-834, (2006).
DOI: 10.1201/9780203861592.ch34
Google Scholar
[14]
A. Formisano, G. De Matteis, S. Panico, F. M. Mazzolani, Full scale test of an existing RC frame reinforced with pure aluminium shear panels, Proc. of the International Colloquium on Stability and Ductility of Steel Structures (SDSS '06), Lisbon, 6-8 September 2006, IST Press, Lisbon (publisher), ISBN 972-8469-61-6, pp.903-910, (2006).
DOI: 10.1016/j.compstruc.2008.09.010
Google Scholar
[15]
A. Formisano, G. De Matteis, S. Panico, F. M. Mazzolani, Seismic upgrading of existing RC buildings by slender steel shear panels: a full-scale experimental investigation, Advanced Steel Construction 4 (2008) 26-45.
DOI: 10.4203/ccp.85.73
Google Scholar
[16]
A. Formisano, G. De Matteis, F.M. Mazzolani, Numerical and experimental behaviour of a full-scale RC structure upgraded with steel and aluminium shear panels, Computers & Structures 88 (2010) 1348-1360.
DOI: 10.1016/j.compstruc.2008.09.010
Google Scholar
[17]
A. Formisano, G. De Matteis, F.M. Mazzolani, Experimental and numerical researches on aluminium alloy systems for structural applications in civil engineering fields, Key Engineering Materials 710 (2016) 256-261.
DOI: 10.4028/www.scientific.net/kem.710.256
Google Scholar
[18]
A. Formisano, F. M. Mazzolani, G. Brando, G. De Matteis, Numerical evaluation of the hysteretic performance of pure aluminium shear panels, Proceedings of the 5th International Conference on Behaviour of Steel Structures in Seismic Areas (STESSA06), pp.211-217, (2006).
DOI: 10.1201/9780203861592.ch120
Google Scholar
[19]
A. Formisano, D. R. Sahoo, Steel shear panels as retrofitting system of existing multi-story RC buildings: Case studies, Advances in Structural Engineering: Mechanics, Volume One, pp.495-512, DOI: 10. 1007/978-81-322-2190-6_41, (2015).
DOI: 10.1007/978-81-322-2190-6_41
Google Scholar
[20]
A. Formisano, F. M. Mazzolani, On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings, Computers and Structures 159 (2015) 1-13.
DOI: 10.1016/j.compstruc.2015.06.016
Google Scholar
[21]
A. Formisano, L. Lombardi, Perforated shear panels for seismic rehabilitation of existing reinforced concrete buildings, Civil-Comp Proceedings, 108, (2015).
DOI: 10.4203/ccp.108.119
Google Scholar
[22]
A. Formisano, L. Lombardi, and F.M. Mazzolani, Perforated metal shear panels as bracing devices of seismic-resistant structures, Journal of Constructional Steel Research 126 (2016) 37-49.
DOI: 10.1016/j.jcsr.2016.07.006
Google Scholar
[23]
A. Formisano, L. Lombardi, Numerical prediction of the non-linear behaviour of perforated metal shear panels Cogent Engineering 3: 1156279 (2016) 1-16 https: /doi. org/10. 1080/23311916. 2016. 1156279.
DOI: 10.1080/23311916.2016.1156279
Google Scholar
[24]
A. Formisano, F. M. Mazzolani, Numerical non-linear behaviour of Aluminium Perforated Shear Walls: A parametric study, Key Engineering Materials, 710 (2016) 250-255.
DOI: 10.4028/www.scientific.net/kem.710.250
Google Scholar
[25]
A. Formisano, M. R. Sheidaii, H. Monsef Ahmadi, F. Fabbrocino, Numerical calibration of experimental tests on perforated Steel Plate Shear Walls: influence of the tightening torque in the plate-frame members bolted connections, Proc. of the 15th International Conference of Numerical Analysis and Applied Mathematics, Thessaloniki, Greece, 25-30 September, (2017).
DOI: 10.1063/1.5044059
Google Scholar
[26]
I. R. Choi, H.G. Park, Cyclic loading test for reinforced concrete frame with thin steel infill plate, Journal of Structural Engineering 137(6) (2011) 654-664.
DOI: 10.1061/(asce)st.1943-541x.0000317
Google Scholar
[27]
C. M. Uang, Establishing R (or Rw) and Cd factors for building seismic provisions, Journal of Structural Engineering, 117(1) (1991) 19-28.
DOI: 10.1061/(asce)0733-9445(1991)117:1(19)
Google Scholar
[28]
H. Krawinkler, A. Nassar, Seismic design based on ductility and cumulative damage demands and capacities, Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, H. Krawinkler and P. Fajfar (eds. ), Elsevier Applied Science, 95-104, (1992).
DOI: 10.1201/9781482296662-2
Google Scholar
[29]
N. M. Newmark, W. J. Hall, Earthquake spectra and design, Earthquake Engineering Research Institute, 1-103, (1982).
Google Scholar
[30]
G. De Matteis, G. Brando, Metal shear panels for seismic protection of buildings: Recent findings and perspectives, Ingegneria Sismica, 33 (3) (2016) 5-27.
Google Scholar