[1]
Daniel, J. I., Gopalaratnam, V. S., Galinat, M. A., Ahmad, S. H., Hoff, G. C., Schupack, M., & Johnston, C. D. Report on Fiber Reinforced Concrete, ACI report 544.1R-96, (2002).
Google Scholar
[2]
Kene, K. S., Vairagade, V. S., & Sathawane, S. Experimental study on behavior of steel and glass fiber reinforced concrete composites. Bonfring international journal of industrial engineering and management science, 2012, 2(4), 125.
DOI: 10.9756/bijiems.1617
Google Scholar
[3]
Nochaiya, T., Wongkeo, W., & Chaipanich, A. Utilization of fly-ash with silica-fume and properties of Portland cement–fly-ash–silica-fume concrete. Fuel, 2010, 89(3), 768-774.
DOI: 10.1016/j.fuel.2009.10.003
Google Scholar
[4]
Neville, A. M. Properties of concrete (Vol. 4). London: Longman. (1995).
Google Scholar
[5]
Yazici, H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and environment, 2007, 42(5), 2083-(2089).
DOI: 10.1016/j.buildenv.2006.03.013
Google Scholar
[6]
Demirboğa, R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 2007, 42(7), 2467-2471.
DOI: 10.1016/j.buildenv.2006.06.010
Google Scholar
[7]
emirboğa, R., & Gül, R. The effects of expanded perlite aggregate, silica-fume and fly-ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 2003, 33(5), 723-727.
DOI: 10.1016/s0008-8846(02)01032-3
Google Scholar
[8]
Fu, X., & Chung, D. D. L. Effects of silica-fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cement and concrete research, 1997, 27(12), 1799-1804.
DOI: 10.1016/s0008-8846(97)00174-9
Google Scholar
[9]
Karahan, O., & Atiş, C. D. The durability properties of polypropylene fiber reinforced fly-ash concrete. Materials & Design, 2011, 32(2), 1044-1049.
DOI: 10.1016/j.matdes.2010.07.011
Google Scholar
[10]
Wu, Z., & Naik, T. R. Properties of concrete produced from multicomponent blended cements. Cement and Concrete Research, 2002, 32(12), 1937-(1942).
DOI: 10.1016/s0008-8846(02)00907-9
Google Scholar
[11]
Han, S. H., Kim, J. K., & Park, Y. D. Prediction of compressive strength of fly-ash concrete by new apparent activation energy function. Cement and Concrete Research, 2003, 33(7), 965-971.
DOI: 10.1016/s0008-8846(03)00007-3
Google Scholar
[12]
Kaur, P., & Talwar, M. Different types of Fibres used in FRC. International Journal of Advanced Research in Computer Science, 2017, 8(4), 380.
Google Scholar
[13]
Parameswaran, V. S., Krishnamoorthy, T. S., & Balasubramanian. K. Current Research and Applications of Fiber Reinforced Concrete Composites in India. Structural Engineering Research Centre, Madras, India, 1989, Transportation Research Record 1226.
Google Scholar
[14]
Mohammadi, Y., Singh, S. P., & Kaushik, S. K. Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Construction and Building Materials, 2008, 22(5), 956-965.
DOI: 10.1016/j.conbuildmat.2006.12.004
Google Scholar
[15]
McCarthy, M. J., & Dhir, R. K. Development of high volume fly-ash cements for use in concrete construction. Fuel, 2005, 84(11), 1423-1432.
DOI: 10.1016/j.fuel.2004.08.029
Google Scholar
[16]
Dhir, R. K., Hubbard, F. H., Munday, J. G. L., Jones, M. R., & Duerden, S. L. Contribution of PFA to concrete workability and strength development. Cement and Concrete Research, 1988, 18(2), 277-289.
DOI: 10.1016/0008-8846(88)90012-9
Google Scholar
[17]
Dhir, R. K., Byars, E. A., & Amir-Latifi, S. A. A. PFA concrete: strength development of RHPC/PFA blends. Structural Engineer, 1993, 71(8).
Google Scholar
[18]
Dhir, R. K., Jones, M. R., & Senerirathe, A. M. G. Diffusion of chlorides into concrete influence of PFA quality. Cement and concrete research, 1991, 21(6), 1092-1102.
DOI: 10.1016/0008-8846(91)90069-t
Google Scholar
[19]
Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., & Cail, K. Use of ternary cementitious systems containing silica-fume and fly-ash in concrete. Cement and concrete research, 29(8), 1999, 1207-1214.
DOI: 10.1016/s0008-8846(99)00096-4
Google Scholar
[20]
Luther, M. Silica-fume (microsilica) concrete in bridges. Concrete International, 1993, 15(4), 29-33.
Google Scholar
[21]
Ali, M., Liu, A., Sou, H., & Chouw, N. Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 2012, 30, 814-825.
DOI: 10.1016/j.conbuildmat.2011.12.068
Google Scholar
[22]
Munawar, S. S., Umemura, K., & Kawai, S. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science, 2007, 53(2), 108-113.
DOI: 10.1007/s10086-006-0836-x
Google Scholar
[23]
Ali, M., Li, X., & Chouw, N. Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 2013, 44, 596-605.
DOI: 10.1016/j.matdes.2012.08.038
Google Scholar
[24]
Baruah, P., & Talukdar, S. A comparative study of compressive, flexural, tensile and shear strength of concrete with fibres of different origins. Indian concrete journal, 2007, 81(7), 17-24.
Google Scholar
[25]
Pitroda J, Zala L B & Umrigar F.S. Experimental investigations on partial replacement of cement with fly-ash in design mix concrete. International Journal of Advanced Engineering Technology, 2012, 3 (4), 126-129.
Google Scholar
[26]
Labib, E. L., Mo, Y. L., & Hsu, T. T. Shear cracking of prestressed girders with high strength concrete. International Journal of Concrete Structures and Materials, 2013, 7(1), 71-78.
DOI: 10.1007/s40069-013-0033-4
Google Scholar
[27]
ACI 224R-01. Control of Cracking in Concrete Structures, ACI Committee 224, 2001, 1-46.
DOI: 10.14359/10632
Google Scholar
[28]
ASTM C192 / C192M-16a, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
Google Scholar
[29]
ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org.
Google Scholar
[30]
ASTM C496 / C496M-11, Standard Test Method for Splitting-tensile strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, www.astm.org.
Google Scholar
[31]
Khan, M., & Ali, M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials, 2016, 125, 800-808.
DOI: 10.1016/j.conbuildmat.2016.08.111
Google Scholar