Tribological Effects in and by Metal Cutting

Article Preview

Abstract:

In metal cutting, a severe thermo-mechanical load collective determines the friction and wear behavior at the tool-chip interface. The inaccessibility of this interface complicates studies and thus the understanding of tribological effects in metal cutting. During a tool’s lifetime, local friction conditions change drastically as coatings and tool geometry wear down. This paper shall provide a comprehensive overview of current methods to understand and describe friction conditions in metal cutting and how cutting induced surface layer states may influence the friction and wear behavior of the finished workpiece.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-24

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bailey, Friction in metal machining - mechanical aspects, Wear 31 (1975) 243-275.

DOI: 10.1016/0043-1648(75)90161-1

Google Scholar

[2] N.P. Suh, H.-C. Sin, The genesis of friction, Wear 69 (1981) 91-114.

Google Scholar

[3] K. Maekawa, A. Itoh, Friction and tool wear in nano-scale machining - a molecular dynamics approach, Wear 188 (1995) 115-122.

DOI: 10.1016/0043-1648(95)06633-0

Google Scholar

[4] D. Bai, J. Sun, W. Chen, D. Du, Molecular dynamics simulation of the diffusion behaviour between Co and Ti and its effect on the wear of WC/Co tools when titanium alloy is machined, Ceramics International 42 (15) (2016) 17754-17763.

DOI: 10.1016/j.ceramint.2016.08.103

Google Scholar

[5] S.N. Melkote, W. Grzesik, J. Outeiro, J. Rech, V. Schulze, H. Attia, P.-J. Arrazola, R. M'Saoubi, C. Saldana, Advances in material and friction data for modelling of metal machining, CIRP Annals 66 (2) (2017) 731-754.

DOI: 10.1016/j.cirp.2017.05.002

Google Scholar

[6] M. Merchant, Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip, J of App Phys 16 (5) (1945) 267-275.

DOI: 10.1063/1.1707586

Google Scholar

[7] N.N. Zorev, Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting, Int Res in Prod Eng 49 (1963) 42-49.

Google Scholar

[8] M.C. Shaw, Metal cutting principles, 2nd ed., Oxford University Press, New York, (2005).

Google Scholar

[9] P.J. Arrazola, T. Özel, D. Umbrello, M. Davies, I.S. Jawahir, Recent advances in modelling of metal machining processes, CIRP Annals 62 (2) (2013) 695-718.

DOI: 10.1016/j.cirp.2013.05.006

Google Scholar

[10] H. Qi, B. Mills, Formation of a transfer layer at the tool-chip interface during machining, Wear 245 (1-2) (2000) 136-147.

DOI: 10.1016/s0043-1648(00)00474-9

Google Scholar

[11] X.Q. Song, Y. Takahashi, W.M. He, T. Ihara, On the Formation Mechanisms of Adhering Layer during Machining Metal Material, Key Eng Mat 749 (2017) 39-45.

DOI: 10.4028/www.scientific.net/kem.749.39

Google Scholar

[12] H.O. Gekonde, S.V. Subramanian, Tribology of tool–chip interface and tool wear mechanisms, Surf Coat Tec 149 (2-3) (2002) 151-160.

DOI: 10.1016/s0257-8972(01)01488-8

Google Scholar

[13] T. Özel, T. Altan, Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting, Int J Mach To Manuf 40 (2000) 133-152.

DOI: 10.1016/s0890-6955(99)00051-6

Google Scholar

[14] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Mat Sci and Eng A342 (2003) 58-79.

DOI: 10.1016/s0921-5093(02)00259-9

Google Scholar

[15] W. Grzesik, P. Nieslony, Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating–chip interface, Wear 256 (1-2) (2004) 108-117.

DOI: 10.1016/s0043-1648(03)00390-9

Google Scholar

[16] J. Rech, P.J. Arrazola, C. Claudin, C. Courbon, F. Pusavec, J. Kopac, Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting, CIRP Annals 62 (1) (2013) 79-82.

DOI: 10.1016/j.cirp.2013.03.099

Google Scholar

[17] D. Arulkirubakaran, V. Senthilkumar, V. Kumawat, Effect of micro-textured tools on machining of Ti–6Al–4V alloy: An experimental and numerical approach, Int J of Ref Met and Hard Mat 54 (2016) 165-177.

DOI: 10.1016/j.ijrmhm.2015.07.027

Google Scholar

[18] S. Niketh, G.L. Samuel, Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy, J Clean Prod 167 (2017) 253-270.

DOI: 10.1016/j.jclepro.2017.08.178

Google Scholar

[19] D. Vasumathy, A. Meena, Influence of micro scale textured tools on tribological properties at tool-chip interface in turning AISI 316 austenitic stainless steel, Wear 376-377 (2017) 1747-1758.

DOI: 10.1016/j.wear.2017.01.024

Google Scholar

[20] J. Kümmel, D. Braun, J. Gibmeier, J. Schneider, C. Greiner, V. Schulze, A. Wanner, Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation, J of Mat Pro Tec 215 (2015) 62-70.

DOI: 10.1016/j.jmatprotec.2014.07.032

Google Scholar

[21] F. Zemzemi, J. Rech, W.B. Salem, A. Dogui, P. Kapsa, Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an inconel 718 alloy with cbn and coated carbide tools, Adv in Manuf Sci and Tec 38 (1) (2014).

DOI: 10.2478/amst-2014-0001

Google Scholar

[22] S. Atlati, A. Moufki, M. Nouari, B. Haddag, Interaction between the local tribological conditions at the tool–chip interface and the thermomechanical process in the primary shear zone when dry machining the aluminum alloy AA2024–T351, Tribo Int 105 (2017).

DOI: 10.1016/j.triboint.2016.10.006

Google Scholar

[23] C. Di, Z. Dinghua, W. Baohai, L. Ming, An Investigation of Temperature and Heat Partition on Tool-chip Interface in Milling of Difficult-to-Machine Materials, Procedia CIRP 58 (2017) 49-54.

DOI: 10.1016/j.procir.2017.03.180

Google Scholar

[24] Y. Altintas, D. Aslan, Integration of virtual and on-line machining process control and monitoring, CIRP Annals 66 (1) (2017) 349-352.

DOI: 10.1016/j.cirp.2017.04.047

Google Scholar

[25] B. Cuka, D.-W. Kim, Fuzzy logic based tool condition monitoring for end-milling, Robotics and Computer-Integrated Manufacturing 47 (2017) 22-36.

DOI: 10.1016/j.rcim.2016.12.009

Google Scholar

[26] D.M. D'Addona, Ullah, A. M. M. Sharif, D. Matarazzo, Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing, J of Int Manuf 28 (6) (2017) 1285-1301.

DOI: 10.1007/s10845-015-1155-0

Google Scholar

[27] A.K. Jain, B.K. Lad, A novel integrated tool condition monitoring system, J of Int Manuf 22 (3) (2017) 735.

Google Scholar

[28] F. Klocke, B. Döbbeler, S. Goetz, T.D. Viek, Model-Based Online Tool Monitoring for Hobbing Processes, Procedia CIRP 58 (2017) 601-606.

DOI: 10.1016/j.procir.2017.03.271

Google Scholar

[29] V. Ostasevicius, V. Jurenas, V. Augutis, R. Gaidys, R. Cesnavicius, L. Kizauskiene, R. Dundulis, Monitoring the condition of the cutting tool using self-powering wireless sensor technologies, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 88 (9-12) (2017).

DOI: 10.1007/s00170-016-8939-z

Google Scholar

[30] M. Rizal, J.A. Ghani, M.Z. Nuawi, C. Haron, Cutting tool wear classification and detection using multi-sensor signals and Mahalanobis-Taguchi System, Wear 376-377 (2017) 1759-1765.

DOI: 10.1016/j.wear.2017.02.017

Google Scholar

[31] J. Zhang, B. Starly, Y. Cai, P.H. Cohen, Y.-S. Lee, Particle learning in online tool wear diagnosis and prognosis, J of Manuf Pro 28 (2017) 457-463.

DOI: 10.1016/j.jmapro.2017.04.012

Google Scholar

[32] J. Gu, G. Barber, S. Tung, R.-J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear 225-229 (1999) 273-284.

DOI: 10.1016/s0043-1648(99)00074-5

Google Scholar

[33] M.A. Shalaby, M.A. El Hakim, M.M. Abdelhameed, J.E. Krzanowski, S.C. Veldhuis, G.K. Dosbaeva, Wear mechanisms of several cutting tool materials in hard turning of high carbon–chromium tool steel, Tribo Int 70 (2014) 148-154.

DOI: 10.1016/j.triboint.2013.10.011

Google Scholar

[34] S. Bhowmick, A. Banerji, A.T. Alpas, Tribological behavior of Al–6.5%, –12%, –18.5% Si alloys during machining using CVD diamond and DLC coated tools, Surf Coat Tec 284 (2015) 353-364.

DOI: 10.1016/j.surfcoat.2015.08.073

Google Scholar

[35] H. Çalışkan, M. Küçükköse, The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy, Int J of Ref Met and Hard Mat 50 (2015) 304-312.

DOI: 10.1016/j.ijrmhm.2015.02.012

Google Scholar

[36] W. Grzesik, B. Denkena, K. Zak, T. Grove, B. Bergmann, Correlation Between Friction and Wear of Cubic Borone Nitride Cutting Tools in Precision Hard Machining, J of Manuf Sci and Eng 138 (2016) 31010-1-6.

DOI: 10.1115/1.4031189

Google Scholar

[37] J.M. Boyd, S.C. Veldhuis, Manifestations of reduced tool-chip friction during turning of AISI 1045 steel with PVD-coated carbide inserts, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 91 (1-4) (2017).

DOI: 10.1007/s00170-016-9775-x

Google Scholar

[38] J. Rajaguru, N. Arunachalam, Coated Tool Performance in Dry Turning of Super Duplex Stainless Steel, Procedia Manufacturing 10 (2017) 601-611.

DOI: 10.1016/j.promfg.2017.07.061

Google Scholar

[39] J. de Paiva, R.D. Torres, F.L. Amorim, D. Covelli, M. Tauhiduzzaman, S. Veldhuis, G. Dosbaeva, G. Fox-Rabinovich, Frictional and wear performance of hard coatings during machining of superduplex stainless steel, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 92 (1-4) (2017).

DOI: 10.1007/s00170-017-0141-4

Google Scholar

[40] B. Denkena, A. Lucas, E. Bassett, Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load, CIRP Annals 60 (1) (2011) 73-76.

DOI: 10.1016/j.cirp.2011.03.098

Google Scholar

[41] C. Wang, H. Lin, X. Wang, L. Zheng, W. Xiong, Effect of different oil-on-water cooling conditions on tool wear in turning of compacted graphite cast iron, J Clean Prod 148 (2017) 477-489.

DOI: 10.1016/j.jclepro.2017.02.014

Google Scholar

[42] M.A. Rahman, M.Y. Ali, A.R. Shah Rosli, A. Banu, Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication, IOP Conf Ser: Mat Sci Eng (IOP Conference Series: Materials Science and Engineering) 184 (2017).

DOI: 10.1088/1757-899x/184/1/012036

Google Scholar

[43] M.I. Sadik, S. Isakson, The role of PVD coating and coolant nature in wear development and tool performance in cryogenic and wet milling of Ti-6Al-4V, Wear 386-387 (2017) 204-210.

DOI: 10.1016/j.wear.2017.02.049

Google Scholar

[44] Y. Ayed, G. Germain, A.P. Melsio, P. Kowalewski, D. Locufier, Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti-6Al-4V titanium alloy, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 93 (1-4) (2017).

DOI: 10.1007/s00170-017-0604-7

Google Scholar

[45] S. Sartori, A. Ghiotti, S. Bruschi, Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys, Wear 376-377 (2017) 107-114.

DOI: 10.1016/j.wear.2016.12.047

Google Scholar

[46] F. Zanger, V. Schulze, Investigations on Mechanisms of Tool Wear in Machining of Ti-6Al-4V Using FEM Simulation, Procedia CIRP 8 (2013) 158-163.

DOI: 10.1016/j.procir.2013.06.082

Google Scholar

[47] M. Binder, F. Klocke, D. Lung, Tool wear simulation of complex shaped coated cutting tools, Wear 330-331 (2015) 600-607.

DOI: 10.1016/j.wear.2015.01.015

Google Scholar

[48] M. Binder, F. Klocke, B. Doebbeler, An advanced numerical approach on tool wear simulation for tool and process design in metal cutting, Simulation Modelling Practice and Theory 70 (2017) 65-82.

DOI: 10.1016/j.simpat.2016.09.001

Google Scholar

[49] A. Malakizadi, H. Gruber, I. Sadik, L. Nyborg, An FEM-based approach for tool wear estimation in machining, Wear 368-369 (2016) 10-24.

DOI: 10.1016/j.wear.2016.08.007

Google Scholar

[50] F. Ramírez P., X. Soldani, J. Loya, H. Miguélez, A new approach for time-space wear modeling applied to machining tool wear, Wear 390-391 (2017) 125-134.

DOI: 10.1016/j.wear.2017.07.015

Google Scholar

[51] G. Poulachon, A.L. Moisan, Hard Turning: Chip Formation Mechanisms and Metallurgical Aspects, J of Manuf Sci and Eng 122 (2000) 406-412.

DOI: 10.1115/1.1285891

Google Scholar

[52] D. Ulutan, T. Özel, Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys, J of Mat Pro Tec 213 (12) (2013) 2217-2237.

DOI: 10.1016/j.jmatprotec.2013.05.019

Google Scholar

[53] S. Koseki, K. Inoue, K. Sekiya, S. Morito, T. Ohba, H. Usuki, Wear mechanisms of PVD-coated cutting tools during continuous turning of Ti-6Al-4V alloy, Prec Eng 47 (2017) 434-444.

DOI: 10.1016/j.precisioneng.2016.09.018

Google Scholar

[54] V. Schulze, J. Michna, J. Schneider, P. Gumbsch, Modelling of cutting induced surface phase transformations considering friction effects, Procedia Engineering 19 (2011) 331-336.

DOI: 10.1016/j.proeng.2011.11.121

Google Scholar

[55] W. Grzesik, J. Małecka, Z. Zalisz, K. Zak, P. Niesłony, Investigation of Friction and Wear Mechanisms of TiAlV Coated Carbide Against Ti6Al4V Titanium Alloy Using Pin-On-Disc Tribometer, Arch of Mec Eng 63 (1) (2016) 228.

DOI: 10.1515/meceng-2016-0006

Google Scholar

[56] P. Bollig, J. Michna, C. Faltin, J. Schneider, F. Zanger, R. Schießl, U. Maas, V. Schulze, Experimental and Simulative Modeling Experimental and Simulative Modeling of Drilling Processes for the Compensation of Thermal Effects, in: D. Biermann, F. Hollmann (Eds.), Thermal Effects in Complex Machining Processes: Final Report of the DFG Priority Programme 1480, Springer, Cham, 2018, 145-180.

DOI: 10.1007/978-3-319-57120-1_9

Google Scholar

[57] P. Hedenqvist, M. Olsson, Sliding wear testing of coated cutting tool materials, Tribo Int 24 (3) (1991) 143-150.

DOI: 10.1016/0301-679x(91)90020-a

Google Scholar

[58] M. Olsson, S. Söderberg, S. Jacobson, S. Hogmark, Simulation of cutting tool wear by a modified pin-on-disc test, Int J Mach To Manuf 29 (3) (1989) 377-390.

DOI: 10.1016/0890-6955(89)90007-2

Google Scholar

[59] F. Zemzemi, J. Rech, W.B. Salem, A. Dogui, P. Kapsa, Development of a friction model for the tool-chip-workpiece interfaces during dry machining of AISI4142 steel with TiN coated carbide cutting tools, Int J of Mach and Mach of Mat 2 (3/4) (2007).

DOI: 10.1504/ijmmm.2007.015472

Google Scholar

[60] F. Zemzemi, W. Bensalem, J. Rech, A. Dogui, P. Kapsa, New tribometer designed for the characterisation of the friction properties at the tool/chip/workpiece interfaces in machining, Tribotest 14 (1) (2008) 11-25.

DOI: 10.1002/tt.50

Google Scholar

[61] J. Rech, C. Claudin, W. Grzesik, Z. Zalisz, Characterization of the friction properties of various coatings at the tool—chip—workpiece interfaces in dry machining of AISI 4140 steel, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 222 (4) (2008).

DOI: 10.1243/13506501jet416

Google Scholar

[62] F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, P. Kapsa, Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels, J of Mat Pro Tec 209 (8) (2009) 3978-3990.

DOI: 10.1016/j.jmatprotec.2008.09.019

Google Scholar

[63] C. Claudin, A. Mondelin, J. Rech, G. Fromentin, Effects of a straight oil on friction at the tool–workmaterial interface in machining, Int J Mach To Manuf 50 (8) (2010) 681-688.

DOI: 10.1016/j.ijmachtools.2010.04.013

Google Scholar

[64] P. Faverjon, J. Rech, R. Leroy, Influence of Minimum Quantity Lubrication on Friction Coefficient and Work-Material Adhesion During Machining of Cast Aluminum With Various Cutting Tool Substrates Made of Polycrystalline Diamond, High Speed Steel, and Carbides, J of Trib 135 (4) (2013).

DOI: 10.1115/1.4024546

Google Scholar

[65] J. Rech, C. Claudin, P. Polly, C. Courbon, New aspects of metrology of frictional behaviour in metal cutting, Mechanik (11) (2016) 1751-1753.

DOI: 10.17814/mechanik.2016.11.520

Google Scholar

[66] W. Grzesik, J. Rech, K. Żak, Determination of friction in metal cutting with tool wear and flank face effects, Wear 317 (1-2) (2014) 8-16.

DOI: 10.1016/j.wear.2014.05.003

Google Scholar

[67] N. Banerjee, A. Sharma, Development of a friction model and its application in finite element analysis of minimum quantity lubrication machining of Ti-6Al-4 V, J of Mat Pro Tec 238 (2016) 181-194.

DOI: 10.1016/j.jmatprotec.2016.07.017

Google Scholar

[68] L.A. Denguir, J.C. Outeiro, J. Rech, G. Fromentin, V. Vignal, R. Besnard, Friction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation, Procedia CIRP 58 (2017) 578-583.

DOI: 10.1016/j.procir.2017.03.229

Google Scholar

[69] J.M. Boyd, K. Hosseinkhani, S.C. Veldhuis, E. Ng, Improved prediction of cutting forces via finite element simulations using novel heavy-load, high-temperature tribometer friction data, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 86 (5-8) (2016).

DOI: 10.1007/s00170-015-8284-7

Google Scholar

[70] L. Meier, N. Schaal, K. Wegener, In-process Measurement of the Coefficient of Friction on Titanium, Procedia CIRP 58 (2017) 163-168.

DOI: 10.1016/j.procir.2017.03.212

Google Scholar

[71] D. Smolenicki, J. Boos, F. Kuster, H. Roelofs, C.F. Wyen, In-process measurement of friction coefficient in orthogonal cutting, CIRP Annals 63 (1) (2014) 97-100.

DOI: 10.1016/j.cirp.2014.03.083

Google Scholar

[72] J. Brocail, M. Watremez, L. Dubar, Identification of a friction model for modelling of orthogonal cutting, Int J Mach To Manuf 50 (9) (2010) 807-814.

DOI: 10.1016/j.ijmachtools.2010.05.003

Google Scholar

[73] H. Puls, F. Klocke, D. Lung, A new experimental methodology to analyse the friction behaviour at the tool-chip interface in metal cutting, Prod Eng 6 (4-5) (2012) 349-354.

DOI: 10.1007/s11740-012-0386-6

Google Scholar

[74] H. Puls, F. Klocke, D. Lung, Experimental investigation on friction under metal cutting conditions, Wear 310 (1-2) (2014) 63-71.

DOI: 10.1016/j.wear.2013.12.020

Google Scholar

[75] C. Nobel, U. Hofmann, F. Klocke, D. Veselovac, H. Puls, Application of a new, severe-condition friction test method to understand the machining characteristics of Cu–Zn alloys using coated cutting tools, Wear 344-345 (2015) 58-68.

DOI: 10.1016/j.wear.2015.10.016

Google Scholar

[76] F. Klocke, R. Kneer, M. Burghold, M. Deppermann, B. Peng, H. Puls, Modelling and Compensation of Thermoelastic Workpiece Deformation in Dry Cutting, in: D. Biermann, F. Hollmann (Eds.), Thermal Effects in Complex Machining Processes: Final Report of the DFG Priority Programme 1480, Springer, Cham, 2018, 63-94.

DOI: 10.1007/978-3-319-57120-1_6

Google Scholar

[77] C. Bonnet, F. Valiorgue, J. Rech, C. Claudin, H. Hamdi, J.M. Bergheau, P. Gilles, Identification of a friction model—Application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool, Int J Mach To Manuf 48 (11) (2008).

DOI: 10.1016/j.ijmachtools.2008.03.011

Google Scholar

[78] W. Grzesik, The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process, Tribo Int 33 (2) (2000) 131-140.

DOI: 10.1016/s0301-679x(00)00072-4

Google Scholar

[79] W. Grzesik, D. Kowalczyk, K. Żak, A new mechanistic friction model for the oblique cutting with tool wear effect, Tribo Int 66 (2013) 49-53.

DOI: 10.1016/j.triboint.2013.04.015

Google Scholar

[80] W. Grzesik, K. Żak, Friction quantification in the oblique cutting with CBN chamfered tools, Wear 304 (1-2) (2013) 36-42.

DOI: 10.1016/j.wear.2013.04.020

Google Scholar

[81] S.Y. Hong, Y. Ding, W.-c. Jeong, Friction and cutting forces in cryogenic machining of Ti–6Al–4V, Int J Mach To Manuf 41 (15) (2001) 2271-2285.

DOI: 10.1016/s0890-6955(01)00029-3

Google Scholar

[82] T. Özel, E. Zeren, Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests, J of Mat Pro Tec 153-154 (2004) 1019-1025.

DOI: 10.1016/j.jmatprotec.2004.04.162

Google Scholar

[83] E. Ozlu, E. Budak, A. Molinari, Analytical and experimental investigation of rake contact and friction behavior in metal cutting, Int J Mach To Manuf 49 (11) (2009) 865-875.

DOI: 10.1016/j.ijmachtools.2009.05.005

Google Scholar

[84] M. San-Juan, Ó. Martín, F. Santos, Experimental study of friction from cutting forces in orthogonal milling, Int J Mach To Manuf 50 (7) (2010) 591-600.

DOI: 10.1016/j.ijmachtools.2010.03.013

Google Scholar

[85] H. Tebassi, M.A. Yallese, I. Meddour, A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles, Eng Solid Mec (2016) 1-10.

DOI: 10.5267/j.esm.2015.10.005

Google Scholar

[86] R. Franchi, A. Del Prete, D. Umbrello, Inverse analysis procedure to determine flow stress and friction data for finite element modeling of machining, Int J of Mat Form 10 (5) (2017) 685-695.

DOI: 10.1007/s12289-016-1311-x

Google Scholar

[87] S.A. Niknam, Modeling and experimental characterization of the friction effects on orthogonal milling exit burrs, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 91 (1-4) (2017) 1079-1089.

DOI: 10.1007/s00170-016-9828-1

Google Scholar

[88] A. Moufki, A. Molinari, D. Dudzinski, Modelling of orthogonal cutting with a temperature dependent friction law, J Mech Phys Solids 46 (10) (1998) 2103-2138.

DOI: 10.1016/s0022-5096(98)00032-5

Google Scholar

[89] S. Bahi, M. Nouari, A. Moufki, M. El Mansori, A. Molinari, A new friction law for sticking and sliding contacts in machining, Tribo Int 44 (7-8) (2011) 764-771.

DOI: 10.1016/j.triboint.2011.01.007

Google Scholar

[90] W. Grzesik, Experimental investigation of the influence of adhesion on the frictional conditions in the cutting process, Tribo Int 32 (1) (1999) 15-23.

DOI: 10.1016/s0301-679x(99)00004-3

Google Scholar

[91] E. Budak, E. Ozlu, Development of a thermomechanical cutting process model for machining process simulations, CIRP Annals 57 (1) (2008) 97-100.

DOI: 10.1016/j.cirp.2008.03.008

Google Scholar

[92] F. Zhou, A new analytical tool-chip friction model in dry cutting, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 70 (1-4) (2014) 309-319.

DOI: 10.1007/s00170-013-5271-8

Google Scholar

[93] H. Qi, B. Mills, Modelling of the dynamic tool–chip interface in metal cutting, J of Mat Pro Tec 138 (1-3) (2003) 201-207.

DOI: 10.1016/s0924-0136(03)00072-4

Google Scholar

[94] L. Zhou, F.Y. Peng, R. Yan, P.F. Yao, C.C. Yang, B. Li, Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects, Int J Mach To Manuf 97 (2015) 29-41.

DOI: 10.1016/j.ijmachtools.2015.07.001

Google Scholar

[95] C. Zhang, J. Lu, F. Zhang, S.I. Butt, Identification of a new friction model at tool-chip interface in dry orthogonal cutting, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 89 (1-4) (2017) 921-932.

DOI: 10.1007/s00170-016-9149-4

Google Scholar

[96] A. Ghandehariun, H.M. Hussein, H.A. Kishawy, Machining metal matrix composites: Novel analytical force model, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 83 (1-4) (2016) 233-241.

DOI: 10.1007/s00170-015-7554-8

Google Scholar

[97] R. Nosouhi, S. Behbahani, S. Amini, M.R. Khosrojerdi, Development of a New Dynamic Friction Model for Analytical Modeing of Elliptical Vibration Assisted Turning Process, J of Mod Proc in Manuf and Prod 5 (3) (2016) 83-92.

DOI: 10.1177/0954405413508943

Google Scholar

[98] M. Wiercigroch, A.M. Krivtsov, Frictional chatter in orthogonal metal cutting, Phil Trans Roy Soc A: Math, Phys and Eng Sci 359 (1781) (2001) 713-738.

DOI: 10.1098/rsta.2000.0752

Google Scholar

[99] R. Rusinek, M. Wiercigroch, P. Wahi, Modelling of frictional chatter in metal cutting, Int J of Mec Sci 89 (2014) 167-176.

DOI: 10.1016/j.ijmecsci.2014.08.020

Google Scholar

[100] E. Usui, K. Maekawa, T. Shirikashi, Simulation analysis of built-edge formation in machining of low carbon sttel, Bull Japan Soc Prec Eng 15 (4) (1981) 237-242.

Google Scholar

[101] T.H. Childs, K. Maekawa, T. Obiwaka, Y. Yamane, Metal Machining: Theory and Applications, John Wiley & Sons Inc., New York, (2000).

Google Scholar

[102] T. Childs, Friction modelling in metal cutting, Wear 260 (3) (2006) 310-318.

DOI: 10.1016/j.wear.2005.01.052

Google Scholar

[103] T. Childs, Surface energy, cutting edge radius and material flow stress size effects in continuous chip formation of metals, CIRP J of Manuf Sci and Tec 3 (1) (2010) 27-39.

DOI: 10.1016/j.cirpj.2010.07.008

Google Scholar

[104] X. Yang, C. Liu, A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method, Int J of Mec Sci 44 (4) (2002) 703-723.

DOI: 10.1016/s0020-7403(02)00008-5

Google Scholar

[105] P.J. Arrazola, D. Ugarte, X. Domínguez, A new approach for the friction identification during machining through the use of finite element modeling, Int J Mach To Manuf 48 (2) (2008) 173-183.

DOI: 10.1016/j.ijmachtools.2007.08.022

Google Scholar

[106] C. Bonnet, F. Valiorgue, J. Rech, H. Hamdi, Improvement of the numerical modeling in orthogonal dry cutting of an AISI 316L stainless steel by the introduction of a new friction model, CIRP J of Manuf Sci and Tec 1 (2) (2008) 114-118.

DOI: 10.1016/j.cirpj.2008.09.006

Google Scholar

[107] J.C. Outeiro, S. Campocasso, L.A. Denguir, G. Fromentin, V. Vignal, G. Poulachon, Experimental and numerical assessment of subsurface plastic deformation induced by OFHC copper machining, CIRP Annals 64 (1) (2015) 53-56.

DOI: 10.1016/j.cirp.2015.04.080

Google Scholar

[108] L.A. Denguir, J.C. Outeiro, G. Fromentin, V. Vignal, R. Besnard, Orthogonal Cutting Simulation of OFHC Copper Using a New Constitutive Model Considering the State of Stress and the Microstructure Effects, Procedia CIRP 46 (2016) 238-241.

DOI: 10.1016/j.procir.2016.03.208

Google Scholar

[109] N. Banerjee, A. Sharma, Identification of a friction model for minimum quantity lubrication machining, Jof Clea Prod 83 (2014) 437-443.

DOI: 10.1016/j.jclepro.2014.07.034

Google Scholar

[110] S. Bahi, G. List, G. Sutter, Modeling of friction along the tool-chip interface in Ti6Al4V alloy cutting, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 84 (9-12) (2016) 1821-1839.

DOI: 10.1007/s00170-015-7752-4

Google Scholar

[111] T. Childs, Numerical experiments on the influence of material and other variables on plane strain continuous chip formation in metal machining, Int J of Mec Sci 48 (3) (2006) 307-322.

DOI: 10.1016/j.ijmecsci.2005.09.012

Google Scholar

[112] T. Özel, The influence of friction models on finite element simulations of machining, Int J Mach To Manuf 46 (5) (2006) 518-530.

Google Scholar

[113] A. Attanasio, E. Ceretti, A. Fiorentino, C. Cappellini, C. Giardini, Investigation and FEM-based simulation of tool wear in turning operations with uncoated carbide tools, Wear 269 (5-6) (2010) 344-350.

DOI: 10.1016/j.wear.2010.04.013

Google Scholar

[114] C. Maranhão, J. Paulo Davim, Finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation, Simulation Modelling Practice and Theory 18 (2) (2010) 139-156.

DOI: 10.1016/j.simpat.2009.10.001

Google Scholar

[115] S. Atlati, B. Haddag, M. Nouari, A. Moufki, Effect of the local friction and contact nature on the Built-Up Edge formation process in machining ductile metals, Tribo Int 90 (2015) 217-227.

DOI: 10.1016/j.triboint.2015.04.024

Google Scholar

[116] F. Ducobu, P.-J. Arrazola, E. Rivière-Lorphèvre, E. Filippi, Finite Element Prediction of the Tool Wear Influence in Ti6Al4V Machining, Procedia CIRP 31 (2015) 124-129.

DOI: 10.1016/j.procir.2015.03.056

Google Scholar

[117] T. Thepsonthi, T. Özel, 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear, J of Mat Pro Tec 221 (2015) 128-145.

DOI: 10.1016/j.jmatprotec.2015.02.019

Google Scholar

[118] L. Filice, F. Micari, S. Rizzuti, D. Umbrello, A critical analysis on the friction modelling in orthogonal machining, Int J Mach To Manuf 47 (3-4) (2007) 709-714.

DOI: 10.1016/j.ijmachtools.2006.05.007

Google Scholar

[119] L. Filice, F. Micari, S. Rizzuti, D. Umbrello, Dependence of machining simulation effectiveness on material and friction modelling, Mac Sci and Tec 12 (3) (2008) 370-389.

DOI: 10.1080/10910340802305969

Google Scholar

[120] A.J. Haglund, H.A. Kishawy, R.J. Rogers, An exploration of friction models for the chip–tool interface using an Arbitrary Lagrangian–Eulerian finite element model, Wear 265 (3-4) (2008) 452-460.

DOI: 10.1016/j.wear.2007.11.025

Google Scholar

[121] P.J. Arrazola, T. Özel, Investigations on the effects of friction modeling in finite element simulation of machining, Int J of Mec Sci 52 (1) (2010) 31-42.

DOI: 10.1016/j.ijmecsci.2009.10.001

Google Scholar

[122] F. Zanger, P. Bollig, V. Schulze, Simulative Investigations on Different Friction Coefficient Models, Procedia CIRP 58 (2017) 140-145.

DOI: 10.1016/j.procir.2017.03.203

Google Scholar

[123] S.N.B. Oliaei, Y. Karpat, Investigating the influence of friction conditions on finite element simulation of microscale machining with the presence of built-up edge, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 90 (1-4) (2017).

DOI: 10.1007/s00170-016-9456-9

Google Scholar

[124] M.H. Dirikolu, T.H. Childs, K. Maekawa, Finite element simulation of chip flow in metal machining, Int J of Mec Sci 43 (2001) 2699-1713.

DOI: 10.1016/s0020-7403(01)00047-9

Google Scholar

[125] V. Schulze, J. Michna, F. Zanger, C. Faltin, U. Maas, J. Schneider, Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers, J Heat Treat Mat 68 (1) (2013).

DOI: 10.3139/105.110177

Google Scholar

[126] L. Chen, T.I. El-Wardany, W.C. Harris, Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses, CIRP Annals 53 (1) (2004) 95-98.

DOI: 10.1016/s0007-8506(07)60653-2

Google Scholar

[127] A. Malakizadi, K. Hosseinkhani, E. Mariano, E. Ng, A. Del Prete, L. Nyborg, Influence of friction models on FE simulation results of orthogonal cutting process, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 88 (9-12) (2017).

DOI: 10.1007/s00170-016-9023-4

Google Scholar

[128] M. Agmell, A. Ahadi, J.-E. Ståhl, Identification of plasticity constants from orthogonal cutting and inverse analysis, Mechanics of Materials 77 (2014) 43-51.

DOI: 10.1016/j.mechmat.2014.07.005

Google Scholar

[129] O. Omar, T. El-Wardany, E. Ng, M.A. Elbestawi, An improved cutting force and surface topography prediction model in end milling, Int J Mach To Manuf 47 (7-8) (2007) 1263-1275.

DOI: 10.1016/j.ijmachtools.2006.08.021

Google Scholar

[130] M. Arizmendi, F.J. Campa, J. Fernández, L.N. López de Lacalle, A. Gil, E. Bilbao, F. Veiga, A. Lamikiz, Model for surface topography prediction in peripheral milling considering tool vibration, CIRP Annals 58 (1) (2009) 93-96.

DOI: 10.1016/j.cirp.2009.03.084

Google Scholar

[131] O. Maiss, T. Grove, B. Denkena, Influence of asymmetric cutting edge roundings on surface topography, Prod Eng Res Devel (Production Engineering) 11 (4-5) (2017) 383-388.

DOI: 10.1007/s11740-017-0742-7

Google Scholar

[132] M. Sedlaček, B. Podgornik, J. Vižintin, Influence of surface preparation on roughness parameters, friction and wear, Wear 266 (3-4) (2009) 482-487.

DOI: 10.1016/j.wear.2008.04.017

Google Scholar

[133] M. Sedlaček, B. Podgornik, J. Vižintin, Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces, Tribo Int 48 (2012) 102-112.

DOI: 10.1016/j.triboint.2011.11.008

Google Scholar

[134] S. Bruschi, R. Bertolini, A. Bordin, F. Medea, A. Ghiotti, Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications, Tribo Int 102 (2016) 133-142.

DOI: 10.1016/j.triboint.2016.05.036

Google Scholar

[135] A. Albers, S. Reichert, A. Joerger, Investigation of roughness parameters of real rough surfaces due to sliding wear under mixed-lubricated conditions with the finite-element-method, World Trib Cong 2017 (2017) 17-22.

Google Scholar

[136] A. Dzierwa, Influence of surface preparation on surface topography and tribological behaviours, Arc of Civ and Mec Eng 17 (3) (2017) 502-510.

DOI: 10.1016/j.acme.2016.12.004

Google Scholar

[137] T. Ibatan, M.S. Uddin, M. Chowdhury, Recent development on surface texturing in enhancing tribological performance of bearing sliders, Surf Coat Tec 272 (2015) 102-120.

DOI: 10.1016/j.surfcoat.2015.04.017

Google Scholar

[138] U. Sudeep, N. Tandon, R. Pandex, Performance of lubricated rolling/sliding concentrated contacts with surface textures: a review, J of Trib 137 (2015) 031501-1-11.

DOI: 10.1115/1.4029770

Google Scholar

[139] D. Braun, C. Greiner, J. Schneider, P. Gumbsch, Efficiency of laser surface texturing in the reduction of friction under mixed lubrication, Tribo Int 77 (2014) 142-147.

DOI: 10.1016/j.triboint.2014.04.012

Google Scholar

[140] M. Matuszewski, T. Mikolajczyk, D.Y. Pimenov, M. Styp-Rekowski, Influence of structure isotropy of machined surface on the wear process, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 88 (9-12) (2017).

DOI: 10.1007/s00170-016-8963-z

Google Scholar

[141] W. Wu, T. Shao, G. Chen, Influence of groove surface texture on temperature rise under dry sliding friction, Science China Technological Sciences 59 (2) (2016) 183-190.

DOI: 10.1007/s11431-015-5920-2

Google Scholar

[142] B. Denkena, J. Köhler, T. Mörke, O. Gümmer, High-Performance Cutting of Micro Patterns, Procedia CIRP 1 (2012) 144-149.

DOI: 10.1016/j.procir.2012.04.024

Google Scholar

[143] J. Resendiz, E. Graham, P. Egberts, S.S. Park, Directional friction surfaces through asymmetrically shaped dimpled surfaces patterned using inclined flat end milling, Tribo Int 91 (2015) 67-73.

DOI: 10.1016/j.triboint.2015.06.025

Google Scholar

[144] M. Hadad, M. Ramezani, Modeling and analysis of a novel approach in machining and structuring of flat surfaces using face milling process, Int J Mach To Manuf 105 (2016) 32-44.

DOI: 10.1016/j.ijmachtools.2016.03.005

Google Scholar

[145] B. Karpuschewski, C. Döbberthin, K. Risse, L. Deters, Analysis of the Textured Surface of Tangential Turn-Milling, Mat Perf and Char 6 (2) (2017) MPC20160012.

DOI: 10.1520/mpc20160012

Google Scholar

[146] M.N. Nasr, Effects of Sequential Cuts on Residual Stresses when Orthogonal Cutting Steel AISI 1045, Procedia CIRP 31 (2015) 118-123.

DOI: 10.1016/j.procir.2015.03.032

Google Scholar

[147] S. Bhopale, P.D. Darade, S.V. Kamat, G.K. Lamdhade, Consequence of Cutting Parameters on Residual Stresses of AISI 1018 Cold Rolled Steel, Materials Today: Proceedings 4 (2) (2017) 2445-2453.

DOI: 10.1016/j.matpr.2017.02.096

Google Scholar

[148] J. Kundrák, A.G. Mamalis, G. Szabó, Z. Pálmai, K. Gyáni, Numerical examination of residual stresses developing during hard turning at different rake angles, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 89 (5-8) (2017).

DOI: 10.1007/s00170-016-9229-5

Google Scholar

[149] S. Pawar, A. Salve, S. Chinchanikar, A. Kulkarni, G. Lamdhade, Residual Stresses during Hard Turning of AISI 52100 Steel: Numerical Modelling with Experimental Validation, Materials Today: Proceedings 4 (2) (2017) 2350-2359.

DOI: 10.1016/j.matpr.2017.02.084

Google Scholar

[150] I.S. Jawahir, E. Brinksmeier, R. M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, Surface integrity in material removal processes: Recent advances, CIRP Annals 60 (2) (2011) 603-626.

DOI: 10.1016/j.cirp.2011.05.002

Google Scholar

[151] C.E. Ventura, B. Breidenstein, B. Denkena, Influence of customized cutting edge geometries on the workpiece residual stress in hard turning, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2017).

DOI: 10.1177/0954405416685388

Google Scholar

[152] R. Zhou, W. Yang, Analytical modeling of residual stress in helical end milling of nickel-aluminum bronze, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 89 (1-4) (2017) 987-996.

DOI: 10.1007/s00170-016-9145-8

Google Scholar

[153] J. Wang, D. Zhang, B. Wu, M. Luo, Numerical and Empirical Modelling of Machining-induced Residual Stresses in Ball end Milling of Inconel 718, Procedia CIRP 58 (2017) 7-12.

DOI: 10.1016/j.procir.2017.03.177

Google Scholar

[154] S. Saini, I.S. Ahuja, V.S. Sharma, Residual Stresses, Surface Roughness, and Tool Wear in Hard Turning: A Comprehensive Review, Mat and Manuf Proc 27 (6) (2012) 583-598.

DOI: 10.1080/10426914.2011.585505

Google Scholar

[155] F. Pape, T. Neubauer, O. Maiß, B. Denkena, G. Poll, Influence of Residual Stresses Introduced by Manufacturing Processes on Bearing Endurance Time, Tribol Lett 65 (2) (2017) 87.

DOI: 10.1007/s11249-017-0855-3

Google Scholar

[156] J.W. Ho, C. Noyan, J.B. Cohen, V.D. Khanna, Z. Eliezer, Residual stresses and sliding wear, Wear 84 (1983) 183-202.

DOI: 10.1016/0043-1648(83)90263-6

Google Scholar

[157] R.A. Poggie, J.J. Wert, The influence of surface finish and strain hardening on near-surface residual stress and the friction and wear behavior of A2, D2 and CPM-10V tool steels, Wear 149 (1991) 209-220.

DOI: 10.1016/0043-1648(91)90374-4

Google Scholar

[158] J.J. Ryu, B.H. Chua, P. Shrotriya, M.M. Ferraro, Influence of in-plane stress state on sliding contact fatigue damage of metallic surfaces, Tribo Int 116 (2017) 113-119.

DOI: 10.1016/j.triboint.2017.06.009

Google Scholar

[159] A. Mitchell, P. Shrotriya, Onset of nanoscale wear of metallic implant materials: Influence of surface residual stresses and contact loads, Wear 263 (7-12) (2007) 1117-1123.

DOI: 10.1016/j.wear.2007.01.068

Google Scholar

[160] K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mat & Des 111 (2016) 548-574.

DOI: 10.1016/j.matdes.2016.09.012

Google Scholar

[161] H. Liu, J. Zhang, X. Xu, Y. Jiang, Y. He, W. Zhao, Effect of microstructure evolution on chip formation and fracture during high-speed cutting of single phase metals, Int J Adv Manuf Tec (The International Journal of Advanced Manufacturing Technology) 91 (1-4) (2017).

DOI: 10.1007/s00170-016-9823-6

Google Scholar

[162] D. Yameogo, B. Haddag, H. Makich, M. Nouari, Prediction of the Cutting Forces and Chip Morphology When Machining the Ti6Al4V Alloy Using a Microstructural Coupled Model, Procedia CIRP 58 (2017) 335-340.

DOI: 10.1016/j.procir.2017.03.233

Google Scholar

[163] W. Bai, R. Sun, J. Leopold, V.V. Silberschmidt, Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: Numerical modelling and experimental analysis, Ultrasonics 78 (2017) 70-82.

DOI: 10.1016/j.ultras.2017.03.005

Google Scholar

[164] F.P. Marques, C. Scandian, A.C. Bozzi, N.K. Fukumasu, A.P. Tschiptschin, Formation of a nanocrystalline recrystallized layer during microabrasive wear of a cobalt-chromium based alloy (Co-30Cr-19Fe), Tribo Int 116 (2017) 105-112.

DOI: 10.1016/j.triboint.2017.07.006

Google Scholar

[165] E. Segebade, F. Zanger, V. Schulze, Influence of Different Asymmetrical Cutting Edge Microgeometries on Surface Integrity, Procedia CIRP 45 (2016) 11-14.

DOI: 10.1016/j.procir.2016.02.070

Google Scholar

[166] S. Buchkremer, F. Klocke, Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation, Conti Mec and Thermo 29 (1) (2017) 271-289.

DOI: 10.1007/s00161-016-0533-y

Google Scholar

[167] H. Zhong, Y. Zhang, K. Lu, Friction and wear behaviors of nanostructured metals, Mat Sci and Eng 24 (4) (2008) 483-494.

Google Scholar

[168] K. Wolff, Z. Liu, D. Braun, J. Schneider, C. Greiner, Chronology of the microstructure evolution for pearlitic steel under unidirectional tribological loading, Tribo Int 102 (2016) 540-545.

DOI: 10.1016/j.triboint.2016.06.016

Google Scholar

[169] B. Yao, Z. Han, K. Lu, Correlation between wear resistance and subsurface recrystallization structure in copper, Wear 294-295 (2012) 438-445.

DOI: 10.1016/j.wear.2012.07.008

Google Scholar

[170] P. Bollig, C. Faltin, R. Schießl, J. Schneider, U. Maas, V. Schulze, Considering the Influence of Minimum Quantity Lubrication for Modelling Changes in Temperature, Forces and Phase Transformations during Machining, Procedia CIRP 31 (2015).

DOI: 10.1016/j.procir.2015.03.025

Google Scholar

[171] D. Frölich, B. Magyar, B. Sauer, P. Mayer, B. Kirsch, J.C. Aurich, R. Skorupski, M. Smaga, T. Beck, D. Eifler, Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system, Wear 328-329 (2015).

DOI: 10.1016/j.wear.2015.02.004

Google Scholar

[172] M.A. Moore, The relationship between the abrasive wear resistance, hardness and microstructure of ferritic materials, Wear 28 (1974) 59-68.

DOI: 10.1016/0043-1648(74)90101-x

Google Scholar

[173] Y. Wang, T. Lei, J. Lu, Tribo-metallographic behaviour of high carbon steels in dry sliding: II. Microstructure and wear, Wear 231 (1999) 12-19.

DOI: 10.1016/s0043-1648(99)00116-7

Google Scholar