Morphological and Structural Characterization of YSZ Thin Film Fabricated by Electrophoretic Deposition on LSM/YSZ Substrate

Article Preview

Abstract:

YSZ film was fabricated by a facile electrophoretic deposition process using commercial YSZ powders. YSZ films with average thickness of around 10 µm were deposited on LSM/YSZ substrate at 20 V for 20 minutes and subsequently sintered at 1200 °C, 1300 °C, and 1350°C. XRD patterns of the deposited and sintered films can be attributed to mostly cubic YSZ phase. On the other hand, SEM images revealed that a sintering temperature above 1300 °C was needed to obtain a denser YSZ film. The film morphology also showed that as the sintering temperature increases, the YSZ grain size also increases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-228

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Vonk, N. Khorshidi, A. Stierle, H. Dosch, Atomic structure and composition of the yttria-stabilized zirconia (111) surface, Surface Science 612 (2013) 69-75.

DOI: 10.1016/j.susc.2013.02.014

Google Scholar

[2] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Progress in Materials Science, 72 (2015) 141-337.

DOI: 10.1016/j.pmatsci.2015.01.001

Google Scholar

[3] S. Tailor, M. Singh, A.V. Doub, Synthesis and Characterization of Yttria-Stabilized Zirconia (YSZ) Nano-clusters for Thermal Barrier Coatings (TBCs) Applications, Journal of Cluster Science 27 (2016) 1097-1107.

DOI: 10.1007/s10876-016-1014-y

Google Scholar

[4] C. Peters, Grain-size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells (SOFC), KIT Scientific Publishing, (2009).

Google Scholar

[5] T.H. Etsell and S.N. Flengas, Electrical properties of solid oxide electrolytes, Chemical Reviews 70 (1970) 339-376.

DOI: 10.1021/cr60265a003

Google Scholar

[6] S.P.S. Badwal and K. Foger, Solid Oxide Electrolyte Fuel Cell Review, Ceramics International 22 (1996) 257-265.

DOI: 10.1016/0272-8842(95)00101-8

Google Scholar

[7] J.Y. Paek, I. Chang, J.H. Park, S. Ji, S.W. Cha, A study on properties of yttrium-stabilized zirconia thin films fabricated by different deposition techniques, Renewable Energy 65 (2004) 202-206.

DOI: 10.1016/j.renene.2013.08.043

Google Scholar

[8] M. Sayer and K. Sreenivas, Ceramic Thin Films: Fabrication and Applications, Science 247 (1990) 1056-1060.

DOI: 10.1126/science.247.4946.1056

Google Scholar

[9] I. Corni, M. Ryan, A. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28 (2008) pp.1353-1367.

DOI: 10.1016/j.jeurceramsoc.2007.12.011

Google Scholar

[10] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 2 (2007) 1-61.

DOI: 10.1016/j.pmatsci.2006.07.001

Google Scholar

[11] T. Ishihara, K. Sato, and Y. Takita, Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells, Journal of American Ceramic Society 79 (1996) 913-919.

DOI: 10.1111/j.1151-2916.1996.tb08525.x

Google Scholar

[12] F. Chen, M. Liu, Preparation of Yttria-stabilized Zirconia (YSZ) Films on La0.85Sr0.15MnO3 (LSM) And LSM-YSZ Substrates Using an Electrophoretic Deposition (EPD) Process, Journal of European Ceramic Society 21 (2001) 127-134.

DOI: 10.1016/s0955-2219(00)00195-3

Google Scholar

[13] F.R. Bueta, J.F. Imperial, R.B. Cervera, Structure and conductivity of NiO/YSZ composite prepared via modified glycine-nitrate process at varying sintering temperatures, Ceramics International Journal 43 (2017) 16174-16177.

DOI: 10.1016/j.ceramint.2017.08.193

Google Scholar