Hydroxyapatite Electro Discharge Coating of Zr-Based Bulk Metallic Glass for Potential Orthopedic Application

Article Preview

Abstract:

In the past, Electro Discharge Machining (EDM) process was well known in cutting extremely hard materials and fabricating complex shapes. Recently, EDM process has been hybridized to not only shape, but also coats the surface of workpiece material. In this study, the deposition of hard carbide and calcium-based oxides on the Zr-based bulk metallic glass (BMG) using hydroxyapatite mixed electro discharge coating (HAm-EDC) have been investigated. The aim is to enhance the biocompatibility and cell adhesion of the BMG as a potential implant. The chemical composition, morphology and thickness of the coated surface were characterized through Optical Microscope, Scanning Electron Microscopy (SEM), X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). Major hydroxyapatite elemental composition (Ca, P, O), carbides (ZrC, TiC) and oxides (ZrO, CaZrO3) were formed on the treated BMG surface. A coating of about 23 µm thick was achieved. The addition of hydroxyapatite powder in the dielectric fluid enhances the Zr-based BMG surface quality by reducing the surface cracks and the crater size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-128

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Axinte, A. Bofu, Y. Wang, A. M. Abdul-Rani, and A. A. A. Aliyu, An overview on the conventional and nonconventional methods for manufacturing the metallic glasses,, in MATEC Web of Conferences, 2017, p.03003.

DOI: 10.1051/matecconf/201711203003

Google Scholar

[2] K. Han, J. Qiang, Y. Wang, and P. Häussler, Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications,, Journal of Alloys and Compounds, vol. 729, pp.144-149, 2017/12/30/ (2017).

DOI: 10.1016/j.jallcom.2017.09.144

Google Scholar

[3] L. Liu, Z. Liu, K. Chan, H. Luo, Q. Cai, and S. Zhang, Surface modification and biocompatibility of Ni-free Zr-based bulk metallic glass,, Scripta Materialia, vol. 58, pp.231-234, (2008).

DOI: 10.1016/j.scriptamat.2007.09.040

Google Scholar

[4] N. Hua, L. Huang, W. He, S. Pang, and T. Zhang, A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility,, Journal of Non-Crystalline Solids, vol. 376, pp.133-138, 2013/09/15/ (2013).

DOI: 10.1016/j.jnoncrysol.2013.05.023

Google Scholar

[5] Y.-C. Liu, G. S. Lin, J.-Y. Wang, C.-S. Cheng, Y.-C. Yang, B.-S. Lee, et al., Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying,, Surface and Coatings Technology, vol. 349, pp.357-363, 2018/09/15/ (2018).

DOI: 10.1016/j.surfcoat.2018.06.010

Google Scholar

[6] B. R. Gligorijević, M. Vilotijević, M. Šćepanović, D. Vidović, and N. A. Radović, Surface structural heterogeneity of high power plasma-sprayed hydroxyapatite coatings,, Journal of Alloys and Compounds, vol. 687, pp.421-430, (2016).

DOI: 10.1016/j.jallcom.2016.06.163

Google Scholar

[7] S. Leeuwenburgh, M. Heine, J. Wolke, S. Pratsinis, J. Schoonman, and J. Jansen, Morphology of calcium phosphate coatings for biomedical applications deposited using electrostatic spray deposition,, Thin Solid Films, vol. 503, pp.69-78, (2006).

DOI: 10.1016/j.tsf.2005.11.116

Google Scholar

[8] M. Fathi and F. Azam, Novel hydroxyapatite/tantalum surface coating for metallic dental implant,, Materials Letters, vol. 61, pp.1238-1241, (2007).

DOI: 10.1016/j.matlet.2006.07.013

Google Scholar

[9] G. Dinda, J. Shin, and J. Mazumder, Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: effect of heat treatment on structure and properties,, Acta biomaterialia, vol. 5, pp.1821-1830, (2009).

DOI: 10.1016/j.actbio.2009.01.027

Google Scholar

[10] F. Amorim and W. Weingaertner, Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds,, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp.137-144, (2004).

DOI: 10.1590/s1678-58782004000200004

Google Scholar

[11] A. A. Aliyu, M. Hamidon, and J. M. Rohani, Parametric Study of Powder Mixed Electrical Discharge Machining and Mathematical Modeling of SiSiC Using Copper Electrode,, in Advanced Materials Research, 2014, pp.878-882.

DOI: 10.4028/www.scientific.net/amr.845.878

Google Scholar

[12] A. A. A. Aliyu, J. M. Rohani, A. M. A. Rani, and H. Musa, Optimization of Electrical Discharge Machining Parameters of SiSiC through Response Surface Methodology,, Jurnal Teknologi, vol. 79, pp.119-129, (2017).

DOI: 10.11113/jt.v79.7622

Google Scholar

[13] A. Al-Khazraji, S. A. Amin, and S. M. Ali, The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel,, Engineering Science and Technology, an International Journal, (2016).

DOI: 10.1016/j.jestch.2016.01.014

Google Scholar

[14] M. Kolli and A. Kumar, Surfactant and graphite powder–assisted electrical discharge machining of titanium alloy,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p.0954405415579019, (2015).

DOI: 10.1177/0954405415579019

Google Scholar

[15] I. Ayesta, B. Izquierdo, J. Sánchez, J. Ramos, S. Plaza, I. Pombo, et al., Influence of EDM parameters on slot machining in C1023 aeronautical alloy,, Procedia CIRP, vol. 6, pp.129-134, (2013).

DOI: 10.1016/j.procir.2013.03.059

Google Scholar

[16] A. A. A. Aliyu, A. M. Abdul-Rani, T. L. Ginta, C. Prakash, E. Axinte, M. A. Razak, et al., A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants,, Advances in Materials Science and Engineering, vol. 2017, (2017).

DOI: 10.1155/2017/8723239

Google Scholar

[17] R. Deepachitra, R. Nigam, S. D. Purohit, B. S. Kumar, T. Hemalatha, and T. P. Sastry, In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting,, Materials and Manufacturing Processes, vol. 30, pp.804-811, (2015).

DOI: 10.1080/10426914.2014.994758

Google Scholar

[18] S.-F. Ou and C.-Y. Wang, Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment,, Surface and Coatings Technology, vol. 302, pp.238-243, 2016/09/25/ (2016).

DOI: 10.1016/j.surfcoat.2016.06.013

Google Scholar

[19] S. J. Algodi, J. W. Murray, M. W. Fay, A. T. Clare, and P. D. Brown, Electrical discharge coating of nanostructured TiC-Fe cermets on 304 stainless steel,, Surface and Coatings Technology, (2016).

DOI: 10.1016/j.surfcoat.2016.09.062

Google Scholar

[20] E. Axinte and R. Fua-Nizan, Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application,, (2017).

DOI: 10.11113/mjfas.v13n4-2.830

Google Scholar

[21] W. F. Sales, A. R. F. Oliveira, and A. A. Raslan, Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications,, Surface and Coatings Technology, vol. 307, Part A, pp.1011-1015, 12/15/ (2016).

DOI: 10.1016/j.surfcoat.2016.10.028

Google Scholar

[22] Z. Xie, Y. Mai, W. Lian, S. He, and X. Jie, Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric,, Surface and Coatings Technology, vol. 300, pp.50-57, (2016).

DOI: 10.1016/j.surfcoat.2016.04.080

Google Scholar