[1]
E. Axinte, A. Bofu, Y. Wang, A. M. Abdul-Rani, and A. A. A. Aliyu, An overview on the conventional and nonconventional methods for manufacturing the metallic glasses,, in MATEC Web of Conferences, 2017, p.03003.
DOI: 10.1051/matecconf/201711203003
Google Scholar
[2]
K. Han, J. Qiang, Y. Wang, and P. Häussler, Zr-Al-Co-Cu bulk metallic glasses for biomedical devices applications,, Journal of Alloys and Compounds, vol. 729, pp.144-149, 2017/12/30/ (2017).
DOI: 10.1016/j.jallcom.2017.09.144
Google Scholar
[3]
L. Liu, Z. Liu, K. Chan, H. Luo, Q. Cai, and S. Zhang, Surface modification and biocompatibility of Ni-free Zr-based bulk metallic glass,, Scripta Materialia, vol. 58, pp.231-234, (2008).
DOI: 10.1016/j.scriptamat.2007.09.040
Google Scholar
[4]
N. Hua, L. Huang, W. He, S. Pang, and T. Zhang, A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility,, Journal of Non-Crystalline Solids, vol. 376, pp.133-138, 2013/09/15/ (2013).
DOI: 10.1016/j.jnoncrysol.2013.05.023
Google Scholar
[5]
Y.-C. Liu, G. S. Lin, J.-Y. Wang, C.-S. Cheng, Y.-C. Yang, B.-S. Lee, et al., Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying,, Surface and Coatings Technology, vol. 349, pp.357-363, 2018/09/15/ (2018).
DOI: 10.1016/j.surfcoat.2018.06.010
Google Scholar
[6]
B. R. Gligorijević, M. Vilotijević, M. Šćepanović, D. Vidović, and N. A. Radović, Surface structural heterogeneity of high power plasma-sprayed hydroxyapatite coatings,, Journal of Alloys and Compounds, vol. 687, pp.421-430, (2016).
DOI: 10.1016/j.jallcom.2016.06.163
Google Scholar
[7]
S. Leeuwenburgh, M. Heine, J. Wolke, S. Pratsinis, J. Schoonman, and J. Jansen, Morphology of calcium phosphate coatings for biomedical applications deposited using electrostatic spray deposition,, Thin Solid Films, vol. 503, pp.69-78, (2006).
DOI: 10.1016/j.tsf.2005.11.116
Google Scholar
[8]
M. Fathi and F. Azam, Novel hydroxyapatite/tantalum surface coating for metallic dental implant,, Materials Letters, vol. 61, pp.1238-1241, (2007).
DOI: 10.1016/j.matlet.2006.07.013
Google Scholar
[9]
G. Dinda, J. Shin, and J. Mazumder, Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: effect of heat treatment on structure and properties,, Acta biomaterialia, vol. 5, pp.1821-1830, (2009).
DOI: 10.1016/j.actbio.2009.01.027
Google Scholar
[10]
F. Amorim and W. Weingaertner, Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds,, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, pp.137-144, (2004).
DOI: 10.1590/s1678-58782004000200004
Google Scholar
[11]
A. A. Aliyu, M. Hamidon, and J. M. Rohani, Parametric Study of Powder Mixed Electrical Discharge Machining and Mathematical Modeling of SiSiC Using Copper Electrode,, in Advanced Materials Research, 2014, pp.878-882.
DOI: 10.4028/www.scientific.net/amr.845.878
Google Scholar
[12]
A. A. A. Aliyu, J. M. Rohani, A. M. A. Rani, and H. Musa, Optimization of Electrical Discharge Machining Parameters of SiSiC through Response Surface Methodology,, Jurnal Teknologi, vol. 79, pp.119-129, (2017).
DOI: 10.11113/jt.v79.7622
Google Scholar
[13]
A. Al-Khazraji, S. A. Amin, and S. M. Ali, The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel,, Engineering Science and Technology, an International Journal, (2016).
DOI: 10.1016/j.jestch.2016.01.014
Google Scholar
[14]
M. Kolli and A. Kumar, Surfactant and graphite powder–assisted electrical discharge machining of titanium alloy,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p.0954405415579019, (2015).
DOI: 10.1177/0954405415579019
Google Scholar
[15]
I. Ayesta, B. Izquierdo, J. Sánchez, J. Ramos, S. Plaza, I. Pombo, et al., Influence of EDM parameters on slot machining in C1023 aeronautical alloy,, Procedia CIRP, vol. 6, pp.129-134, (2013).
DOI: 10.1016/j.procir.2013.03.059
Google Scholar
[16]
A. A. A. Aliyu, A. M. Abdul-Rani, T. L. Ginta, C. Prakash, E. Axinte, M. A. Razak, et al., A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants,, Advances in Materials Science and Engineering, vol. 2017, (2017).
DOI: 10.1155/2017/8723239
Google Scholar
[17]
R. Deepachitra, R. Nigam, S. D. Purohit, B. S. Kumar, T. Hemalatha, and T. P. Sastry, In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting,, Materials and Manufacturing Processes, vol. 30, pp.804-811, (2015).
DOI: 10.1080/10426914.2014.994758
Google Scholar
[18]
S.-F. Ou and C.-Y. Wang, Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment,, Surface and Coatings Technology, vol. 302, pp.238-243, 2016/09/25/ (2016).
DOI: 10.1016/j.surfcoat.2016.06.013
Google Scholar
[19]
S. J. Algodi, J. W. Murray, M. W. Fay, A. T. Clare, and P. D. Brown, Electrical discharge coating of nanostructured TiC-Fe cermets on 304 stainless steel,, Surface and Coatings Technology, (2016).
DOI: 10.1016/j.surfcoat.2016.09.062
Google Scholar
[20]
E. Axinte and R. Fua-Nizan, Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application,, (2017).
DOI: 10.11113/mjfas.v13n4-2.830
Google Scholar
[21]
W. F. Sales, A. R. F. Oliveira, and A. A. Raslan, Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications,, Surface and Coatings Technology, vol. 307, Part A, pp.1011-1015, 12/15/ (2016).
DOI: 10.1016/j.surfcoat.2016.10.028
Google Scholar
[22]
Z. Xie, Y. Mai, W. Lian, S. He, and X. Jie, Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric,, Surface and Coatings Technology, vol. 300, pp.50-57, (2016).
DOI: 10.1016/j.surfcoat.2016.04.080
Google Scholar