Concerns on Analytical Results Involving Infrared to Microscopic Data Dealing with Ionic Liquids in Pretreatment of Lignocellulosic Biomass

Article Preview

Abstract:

Lignocellulosic biomass containing cellulose, hemicelluloses and lignin is significantly analyzed via methods from infrared to microscopy. These methods help researchers to explore the organic or inorganic functional groups and physical surface impacts microscopically on the particles of the pretreated biomass. Some concerns arise in understanding the data results. An investigation with the presence of ionic liquids on Leucaena Leucocephala (Petai Belalang), Acacia Auriculiformis and Melastoma Malabathricum (Senduduk) are reported via the results of Fourier Transform Infrared Spectrum (FTIR) and Scanning Electron Microscopy (SEM). The model ionic liquids as green solvents used are 1-Ethyl-3-methylimidazolium Acetate (EMIMAc) and 1-Ethyl-3-methylimidazolium Chloride (EMIMCl). This work is very essential to sustain preliminary reliable understanding on the chemical and physical effects on lignocellulosic biomass during pretreatment with solvents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.N.C. Kamarludin, N.S.M. Safaai, A. Azizan, H. Madzaki, M.S. Mamat, N.H. Zulkifli, M.F. Zainuddin, Effect of Mechanical Grinding and Ionic Liquid Pre-treatment on Oil Palm Frond, Malaysian J. Anal. Sci. 18 (2014) 737–742.

Google Scholar

[2] S.N.C. Kamarludin, M.S. Jainal, A. Azizan, N.S.M. Safaai, A.R.M. Daud, Mechanical Pretreatment of Lignocellulosic Biomass for Biofuel Production, Appl. Mech. Mater. 625 (2014) 838–841.

DOI: 10.4028/www.scientific.net/amm.625.838

Google Scholar

[3] S.N.C. Kamarludin, S. Ubong, N. Idris, I.S. Azmi, M.S. Jainal, R. Jalil, W.A. Omar, T.E.T.Z Mulok, Imidazolium-based Ionic Liquid Dissolution Influence on Crystallinity of Oil Palm Frond, Oil Palm Trunk and Elephant Grass Lignocellulosic Biomass, Adv. Mater. Res. 911 (2014) 307–313.

DOI: 10.4028/www.scientific.net/amr.911.307

Google Scholar

[4] M.S.M. Rasat, R. Wahab, M. Mohamed, M.I. Ahmad, M.H.M. Amini, W.M.N.W.A. Rahman, M.K.A.A. Razab, A.A.M. Yunus, Preliminary Study on Properties of Small Diameter Wild Leucaena Leucocephala Species as Potential Biomass Energy Sources, ARPN J. Eng. Appl. Sci. 11 (9) (2016) 6128–6137.

Google Scholar

[5] G. Brodeur, E. Yau, K. Badal, J. Collier, K.B. Ramachandran, S. Ramakrishnan, Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review, Enzyme Res. 17 (2011).

DOI: 10.4061/2011/787532

Google Scholar

[6] J.M. Lopes, A.N. Mustapa, M. Pantić, M.D. Bermejo, Á. Martin, Z. Novak, Ž. Knez, M.J. Cocero, Preparation of Cellulose Aerogels from Ionic Liquid Solutions for Supercritical Impregnation of Phytol, J. Supercrit. Fluids 130 (2017)17–22.

DOI: 10.1016/j.supflu.2017.07.018

Google Scholar

[7] A. Azizan, N.S.M. Shafaei, N.S. Sidek, F. Hanafi, N. Mokti, S. Zaharudin, Fourier Transform Infrared Spectroscopy interpretation on pretreated Acacia Auriculiformis, Melastoma Malabathricum and Leucaeana Leucocephala, Int. J. Appl. Eng. Res. 11 (2016) 10048–10051.

Google Scholar

[8] S. K. Deraman, R. Hanum, Y. Subban, N. S. Mohamed, FTIR studies of plasticized PVC doped with NH4CF3SO3 Polymer Electrolyte Membrane, ARPN J. Eng. Appl. Sci. 11 (16) (2016) 9562–9568.

Google Scholar

[9] M.H.M. Amini, M.S.M. Rasat, M.I. Ahmad, R. Wahab, P. Elham, W.M.N.W.A. Rahman, N.H. Ramle, Chemical Composition of Small Diameter Wild Leucaena Leucocephala Species, ARPN J. Eng. Appl. Sci. 12 (2006) 3169–3173.

Google Scholar

[10] F. G. Hurtubise, H. Kraessig, Classification of Fine Structural Characteristics in Cellulose by Infrared Spectroscopy. Use of Potassium Bromide Pellet Technique, Anal. Chem. 32 (2) (1960) 177–181.

DOI: 10.1021/ac60158a010

Google Scholar

[11] L. Cui, Z. Liu, C. Si, L. Hui, N. Kang, T. Zhao, Influence of Steam Explosion Pretreatment on the Composition and Structure of Wheat Straw, BioResources 7 (3) (2012) 4202–4213.

Google Scholar

[12] V. Uzelac, Comparative Study of Steam Explosion Pretreatment of Birch and Spruce: submitted as Master Thesis to Chalmers University of Technology, Gothenburg, Sweden (2014).

Google Scholar

[13] J. Hagman, L. Hedborn, M. Isgren, E. Larsson, P. Mårtensson, Comparison of Pretreatments for Ethanol Production from Softwood: submitted to Lund University: LTH Statoil (2012).

Google Scholar

[14] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc. 124 (2002) 4974–4975.

DOI: 10.1021/ja025790m

Google Scholar

[15] A.A. Guilherme, P.V.F. Dantas, E.S. Santos, F.A.N. Fernandes, G.R. Macedo, Evaluation of Composition, Characterization and Enzymatic Hydrolysis of Pretreated Sugar Cane Bagasse, Brazilian J. Chem. Eng. 32 (1) (2015) 23–33.

DOI: 10.1590/0104-6632.20150321s00003146

Google Scholar

[16] M. Janoobi, J. Harun, A. Shakeri, M. Misra, K. Oksman, Chemical Composition, Crystallinity and Thermal Degradation of Bleached and Unbleached Kenaf Bast (Hibiscus Cannabinus) Pulp and Nanofibers, BioResources 4 (2) (2009) 626–639.

Google Scholar