[1]
E.N. Kablov, O.V. Startsev, A.S. Krotov, V.N. Kirillov, Climatic aging of composite materials applied in aviation. I. Aging mechanisms. Deform. Fract. Mater. 11 (2010) 19-27.
DOI: 10.1134/s0036029511100065
Google Scholar
[2]
E.N. Kablov, O. V. Startsev, A. S. Krotov, V. N. Kirillov, Climatic aging of composite materials for aviation purposes. II. Relaxation of the initial structural unevenness of the gradient properties in thickness. Deform. Destruct. Mater. 12 (2010) 40-46.
DOI: 10.1134/s0036029511100077
Google Scholar
[3]
E.N. Kablov, O. V. Startsev, A. S. Krotov, V. N. Kirillov, Climatic aging of composite materials applied in aviation. III. Significant factors of aging. Deform. Fract. Mater. 1 (2010) 34-40.
DOI: 10.1134/s0036029512040040
Google Scholar
[4]
Yu.S. Urzhumtsev, I.N. Chersky, Scientific bases of engineering climatology of polymeric and composite materials/ Mech. Compos. Mater. 4 (1985) 708-714.
Google Scholar
[5]
O.V. Startsev, Aging of polymeric aviation materials in a warm humid climate, VIAM, Moscow, (1990).
Google Scholar
[6]
O.V. Startsev, G.P. Mashinskaya, V.A. Yartsev, Molecular mobility and relaxation processes in the composite epoxy matrix. 2. Effects of aging in a humid subtropical climate. Mech. Compos. Mater., 4 (1984) 593-597.
DOI: 10.1007/bf00609635
Google Scholar
[7]
O.V. Startsev, V.P. Rudnev, Changes in the structural heterogeneity of epoxy compounds in water saturation / Aviat. Mater. Corros. Aging Mater. Marine Subtropics, VIAM, Moscow, 1983, pp.71-77.
Google Scholar
[8]
O.V. Startsev, A.A. Kuznetsov, A.S. Krotov, T.L. Burlakova, N. In. Ponomareva, A. F. Rumyantsev, G. F. Zhelezina, The effect of moisture on the properties of cold-cured carbon fiber composite used for protection of engineering structures, Bull. Univ. Constr. 10 (2002) 67-74.
Google Scholar
[9]
E.S.-W. Kong, Physical Aging in Epoxy Matrices and Composites. Adv. Polym. Sci. 80 (1980) 125-171.
Google Scholar
[10]
O.V. Startsev, I.M. Medvedev, A.S. Krotov, S.V. Panin, The dependence of the sample surface temperature on the climatic characteristics during exposure in natural conditions. Corr.: Mater., Protect. Moscow. 7 (2013) 43-47.
Google Scholar
[11]
T.A. Nizina, V.P. Selyaev, D.R. Nizin, A.N. Chernov, The effect of color of polymer composite materials on the mode of operation of protective and decorative coatings under the effect of natural climatic factors. Reg. Arch. Constr. 1 (2016) 59-67.
Google Scholar
[12]
T.A. Nizina, A.N. Chernov, D.R. Nizin, A.I. Popova, The effect of color of epoxy composites on changes in colorimetric characteristics during full-scale exposure. Bull. MSCU. 7 (2016) 67-80.
Google Scholar
[13]
O. Startsev, A. Krotov, G. Mashinskaya, Climatic Ageing of Organic Fiber Reinforced Plastics: Water Effect. J. Polymer. Mater. 37 (1997) 161-171.
DOI: 10.1080/00914039708031483
Google Scholar
[14]
O.V. Startsev, Structural Heterogenity and Physical Properties of Climatic Aged Polymeric Composite Materials. EUROMECH 350: Proc. Conf. Image Analysis, Porous Materials and Physical Properties, Carcans, France, 7 June (1996).
Google Scholar
[15]
O.V. Startsev, A.A. Kuznetsov, A.S. Krotov, L. I. Anikhovskaya, O. G. Senatorova, Modeling of moisture transfer in laminated plastics and glass-reinforced plastics. Phys. Mesomech. V.5, 2 (2002) 109-114.
Google Scholar
[16]
O.V. Startsev, K.O. Prokopeko, A.A. Litvinov, A. S. Krotov, L. I. Anihovskaya, L. A. Dementieva, Study of thermo-humid aging of aviation glass-reinforced plastics. Adhes., Seal., Technol. 8 (2009) 18-22.
Google Scholar