Biosorption of Lead(II) from Aqueous Solution by Raw and Treated Streptomyces rimosus: Equilibrium, Kinetic and Thermodynamic Studies

Article Preview

Abstract:

This study examines the elimination potential of bacterial biomass (Streptomyces rimosus) against lead (II). The biomass was used in a raw state and treated with NaOH. The adsorption was influenced by pH, temperature and contact time. Treated biomass eliminates the largest amount of lead (II) compared to raw biomass. The Langmuir isotherm is the most appropriate to describe our results with maximum capacity of 47.63 mg/g for lead at 45°C. These results suggest that microbial species as bacterial biomass can be used successfully in the treatment of wastewater contaminated by pollutants such as heavy metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Lata, V.K. Garg, R.K. Gupta, Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus, L. J. Hazard. Mater. 157 (2008) 503-509.

DOI: 10.1016/j.jhazmat.2008.01.011

Google Scholar

[2] P. Xiangliang, W. Jianlong, Z. Daoyong, Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel, Process Biochem. 40 (2005) 2799-2803.

DOI: 10.1016/j.procbio.2004.12.007

Google Scholar

[3] M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol. 96 (2005) 1518-1521.

DOI: 10.1016/j.biortech.2004.12.005

Google Scholar

[4] A.H. Oren, A. Kaya, Factors affecting adsorption characteristics of Zn2+ on two natural zeolites, J. Hazard. Mater. B. 131 (2006) 59-65.

DOI: 10.1016/j.jhazmat.2005.09.027

Google Scholar

[5] A. Iddou and M.S. Ouali, Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent, Colloids Surfaces B Biointerfaces. 66 (2008) 240-245.

DOI: 10.1016/j.colsurfb.2008.06.018

Google Scholar

[6] N. Noureddine, S. Benhammadi, F. Kara, H. Aguedal, A. Iddou, T. Juhna, Purification of contaminated water with chromium(VI) using Pseudomonas aeruginosa, Key Eng. Mater. 721 (2017) 143-148.

DOI: 10.4028/www.scientific.net/kem.721.143

Google Scholar

[7] H. Yuan, J. Zhang, Z. Lu, H. Min, C. Wu, Studies on biosorption equilibrium and kinetics of Cd2+ by Streptomyces sp. K33 and HL-12, Journal of Hazardous Materials. 164 (2009) 423-431.

DOI: 10.1016/j.jhazmat.2008.08.014

Google Scholar

[8] L. Svecova, M. Spanelova, M. Kubal, E. Guibal, Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry, I. Equilibrium studies, Separation and Purification Technology. 52 (2006) 142-153.

DOI: 10.1016/j.seppur.2006.03.024

Google Scholar

[9] Y. Dursun, A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead(II) ions onto pretreated Aspergillus niger, Biochemical Engineering Journal. 28 (2006) 187-195.

DOI: 10.1016/j.bej.2005.11.003

Google Scholar

[10] G. Yan, T. Viraraghavan, Heavy metal removal from aqueous solution by fungus Mucor rouxii, Water Res. 37 (2003) 4468-4496.

DOI: 10.1016/s0043-1354(03)00409-3

Google Scholar

[11] Q. Li, S. Wu, G. Liu, X. Liao, X. Deng, D. Sun,Y. Hu,Y. Huang, Simultaneous biosorptionof cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium, Separ. Purif. Technol. 34 (2004) 135-142.

DOI: 10.1016/s1383-5866(03)00187-4

Google Scholar

[12] D. Kratochvil, B. Volesky, Advances in biosorption of heavy metals, Trends Biotechnol. 16 (1998) 291-300.

Google Scholar

[13] K. Vijayaraghavan, M. Lee, Y. Yun, Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel(II) bearing solutions, Biochemical Engineering Journal. 41 (2008) 228-233.

DOI: 10.1016/j.bej.2008.04.019

Google Scholar

[14] R. Nadeem, T.M. Ansari, A.M. Khalid, Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales, Journal of Hazardous Materials. 156 (2008) 64-73.

DOI: 10.1016/j.jhazmat.2007.11.124

Google Scholar

[15] R.A. Anayurt, A. Sari, M. Tuzen, Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass, Chemical Engineering Journal. 151 (2009) 255-261.

DOI: 10.1016/j.cej.2009.03.002

Google Scholar

[16] A. Sarı, M. Tuzen, Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass, J. Hazard. Mater. 152 (2008) 302-308.

DOI: 10.1016/j.jhazmat.2007.06.097

Google Scholar

[17] S. Tunali, T. Akar, A.S. Ozcan, I. Kiran, A. Ozcan, Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola, Separ. Purif. Technol. 47 (2006) 105-112.

DOI: 10.1016/j.seppur.2005.06.009

Google Scholar

[18] T. Akar, S. Tunali, Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution, Bioresour. Technol. 97 (2006) 1780-1787.

DOI: 10.1016/j.biortech.2005.09.009

Google Scholar

[19] B. Mattuschka, G. Straube, Biosorption of metals by a waste biomass, J. Chem. Technol. Biotechnol. 58 (1993) 57-63.

DOI: 10.1002/jctb.280580108

Google Scholar

[20] R.J.E. Martins, R. Pardo, R.A.R. Boaventura, cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness, Water Res. 38 (2004) 693-699.

DOI: 10.1016/j.watres.2003.10.013

Google Scholar