Fabrication of Bioactive Glass with Titanium Ion Doping via Various Reactive Environments

Article Preview

Abstract:

Bioactive glass has high biocompatibility and bioactivity. With specific ion adding, it can show different advantages. Titanium ion can improve the mechanic strength, antibacterial ability of bioactive glass, and stability. In this study, bioactive glass with titanium ion doping by the sol-gel method via various reactive environments was fabricated successfully. The morphology was observed by scanning electron microscopy (SEM). The chemical composition was measured by energy dispersive X-ray spectrometer (EDS). By soaking in SBF, the bioactivity of samples had also been analyzed. The formula of bioglass has been optimized to make the better bioactivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. L. Hench, R. J. Splinter, W. Allen, and T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials,, Journal of Biomedical Materials Research Part A, vol. 5, pp.117-141, (1971).

DOI: 10.1002/jbm.820050611

Google Scholar

[2] S. Heidari, T. Hooshmand, B. E. Yekta, A. Tarlani, N. Noshiri, and M. Tahriri, Effect of addition of titanium on structural, mechanical and biological properties of 45S5 glass-ceramic,, Ceramics International, vol. 44, pp.11682-11692, (2018).

DOI: 10.1016/j.ceramint.2018.03.245

Google Scholar

[3] M. Riaz, R. Zia, F. Saleemi, T. Hussain, F. Bashir, and H. Ikhram, Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics,, Mater Sci Eng C Mater Biol Appl, vol. 69, pp.1058-67, Dec 1 (2016).

DOI: 10.1016/j.msec.2016.08.022

Google Scholar

[4] A. Thomas, K. C. R. Kolan, M. C. Leu, and G. E. Hilmas, Freeform extrusion fabrication of titanium fiber reinforced 13-93 bioactive glass scaffolds,, J Mech Behav Biomed Mater, vol. 70, pp.43-52, (2017).

DOI: 10.1016/j.jmbbm.2016.12.025

Google Scholar

[5] Y. Jiang, H. Ning, C. Tian, B. Jiang, Q. Li, H. Yan, et al., Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution,, Applied Catalysis B: Environmental, vol. 229, pp.1-7, (2018).

DOI: 10.1016/j.apcatb.2018.01.079

Google Scholar

[6] C.-L. Huang, W. Fang, I. H. Chen, and T.-Y. Hung, Manufacture and biomimetic mineral deposition of nanoscale bioactive glasses with mesoporous structures using sol-gel methods,, Ceramics International, vol. 44, pp.17224-17229, (2018).

DOI: 10.1016/j.ceramint.2018.06.180

Google Scholar

[7] A. E. Pazarçeviren, A. Tahmasebifar, A. Tezcaner, D. Keskin, and Z. Evis, Investigation of bismuth doped bioglass/graphene oxide nanocomposites for bone tissue engineering,, Ceramics International, vol. 44, pp.3791-3799, (2018).

DOI: 10.1016/j.ceramint.2017.11.164

Google Scholar

[8] Y. B. Veytskin, V. K. Tammina, C. P. Bobko, P. G. Hartley, M. B. Clennell, D. N. Dewhurst, et al., Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry,, Geomechanics for Energy and the Environment, vol. 9, pp.21-35, (2017).

DOI: 10.1016/j.gete.2016.10.004

Google Scholar

[9] E. Vernè, S. Ferraris, C. Cassinelli, and A. R. Boccaccini, Surface functionalization of Bioglass® with alkaline phosphatase,, Surface and Coatings Technology, vol. 264, pp.132-139, (2015).

DOI: 10.1016/j.surfcoat.2015.01.001

Google Scholar

[10] Y. Li, W. Hu, G. Han, W. Lu, D. Jia, M. Hu, et al., Involvement of bone morphogenetic protein–related pathways in the effect of aucubin on the promotion of osteoblast differentiation in MG63 cells,, Chemico-Biological Interactions, vol. 283, pp.51-58, (2018).

DOI: 10.1016/j.cbi.2018.02.005

Google Scholar

[11] Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, et al., Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route,, Materials & Design, vol. 99, pp.521-527, (2016).

DOI: 10.1016/j.matdes.2016.03.096

Google Scholar

[12] A. Cahyanto, K. Tsuru, and K. Ishikawa, Effect of Setting Atmosphere on Apatite Cement Resorption: An In Vitro and In Vivo Study,, Journal of the Mechanical Behavior of Biomedical Materials, (2018).

DOI: 10.1016/j.jmbbm.2018.08.021

Google Scholar