Effect of Solution Treatment Time on Microhardness of High Nitrogen Austenitic Stainless Steel

Article Preview

Abstract:

High nitrogen stainless steel (HNSS) is becoming an increasingly important engineering material because of its excellent corrosion resistance and good mechanical properties. A hot rolled Cr19Mn19Mo2N0.7 HNSS, having a microstructure consisting of banded ferrite and dotted/dendritic nitrides dispersed in the austenite matrix, was solution treated at 1160oC for various times. It is shown that the nitride can be dissolved, and the shape of ferrite can be changed by the solution treatment. The microhardness of both austenite and ferrite decreases with increasing solution treatment time. This is attributed to an increased grain size and a homogeneous distribution of alloying elements. The results are helpful in controlling the thermomechanical processing of HNSSs in commercial practice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Erneman, M. Schwind and P. Liu: Acta Mater Vol. 52 (2004), pp.4337-4350.

Google Scholar

[2] H.S. Khatak and B Raj, Corrosion of austenitic stainless steels: mechanism, mitigation and monitoring (Woodhead Publications, UK 2002).

Google Scholar

[3] J. F. Santos, C. M. Garzón and A. P. Tschiptschin: Mater. Sci. Eng. A. Vol. 382 (2004), pp.378-86.

Google Scholar

[4] N. Wang, J. Wang and Y. J. Li: Pressure vessel Vol. 35 (2018), pp.54-58.

Google Scholar

[5] Michael F McGuire: Advanced Materials & Processes; Vol. 166 (2008), p.58.

Google Scholar

[6] K. L. Kamerud, K. A. Hobbie and K. A. Anderson: Journal of Agricultural and Food Chemistry Vol. 61 (2013), pp.9495-9501.

Google Scholar

[7] M. Sumita, T. Hanawa and S. H: Materials Science and Engineering Vol. C24 (2004), pp.753-760.

Google Scholar

[8] R. Mohammed, G. M. Reddy and K. S. Rao: Defense Technology Vol. 13 (2017), pp.59-71.

Google Scholar

[9] H. Baba, T. Kodama and Y. Katada: Corrosion Science Vol. 44 (2002), pp.2393-2407.

Google Scholar

[10] J. W. Simmons: Materials Science and Engineering Vol. A207 (1996), pp.159-169.

Google Scholar

[11] Z. H. Jiang, Z. R. Zhang, H. B. Li, Z. Li and Q. F. Ma: International Journal of Minerals Vol. 16 (2010), pp.729-737.

Google Scholar

[12] Y. Katada, M. Sagara and Y. Kobayashi: Material and Manufacturing Process Vol. 19 (2006), pp.19-30.

Google Scholar

[13] R. D. Knutsen, C. L. Lang and J.A. Basson: Acta Materialia Vol. 8 (2004), pp.2407-2417.

Google Scholar

[14] D. Kuroda, S. Hiromoto and T. Hanawa: Materials Transactions Vol. 12 (2002), pp.3100-3104.

Google Scholar

[15] D. X. Wang, R. Zhou, X. X. Cui, G. W. Ding and C. Liu: Key Engineering Materials Vol 775 (2018), pp.454-458.

Google Scholar

[16] V. D. Cojocaru, N. Serban, M. L. Angelescu, E. M. Cojocaru, I. Cinca, D. Raducanu and A. N. vintilla: Materialwiss Werkstofftech Vol. 49 (2018), pp.530-537.

Google Scholar

[17] A. Pramanik and A. K. Basak, Stainless Steel, Microstructure Mechanical Properties and Methods of Application (Nova Publishers 2016).

Google Scholar

[18] R. Dayal, N. Parvathavarthini and B. Raj: Int. Mater. Rev Vol. 50 (2005), pp.129-155.

Google Scholar

[19] J. W. Elmer, T. A. Palmer and E.D. Specht: Mater. Sci. Eng. A. Vol. 459 (2007), pp.151-155.

Google Scholar

[20] H. Luo, X.G. Li and C.F. Dong: Arabian Journal of Chemistry Vol. 10(2017), pp.90-94.

Google Scholar