Hydrolytic Lignin: It’s Activated and Fluorinated Forms

Article Preview

Abstract:

The hydrolytic lignin (HL) derivatives have been prepared via its physical activation (high-temperature annealing in vacuum) followed by chemical modification (fluorination). It was found that the graphitized product of thermal activation up to 1000 °C at a low temperature gain rate of < 2 °C/min under high vacuum shows an enhanced specific surface area (215 m2/g), that makes it potentially useful as sorbent, catalytic substrate, or electrode material. It was revealed from the experimental data the manufactured graphitized material consists of nanometric structural blocks, possibly nanographites and/or few-layer nanographenes. The edges of graphenes in agglomerates in activated hydrolytic lignin (AHL) have armchair and zigzag shapes. The nontrivial electronic structure of the zigzag edges, along with the electronic conductivity and the ability of AHL to absorb oxygen, can cause an increase in the energy intensity of lithium battery (LB) manufactured using AHL.The carbon-fluorine bond of semi-ionic type was detected in HL and AHL fluorinated in the temperature range of synthesize 60 – 300 oC. The fluorinated forms of both HL and its thermally activated product show increased values of operating voltage due to the participation of fluorine bound to carbon in the electrochemical process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-105

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M.. Rosas, R. Berenruer, M. J. Valero-Romero, J. Rodriguez-Mirasol and T. Cordero, Frontiers in Materials Carbon-Based Materials. 1 (2014) 1-17. Information on www.frontiersin.org.

Google Scholar

[2] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery, J. Ind. Eng. Chem. 20 (2014) 903-910.

DOI: 10.1016/j.jiec.2013.06.021

Google Scholar

[3] G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks, Science. 335 (2012) 1468-1471.

DOI: 10.1126/science.1215159

Google Scholar

[4] Yu.M., Nikolenko, D.P. Opra, A.K. Tsvetnikov, A.A. Sokolov, A.M. Ziatdinov, S.V. Gnedenkov, Lignin, its graphitized and fluorinated derivatives: The prospects of application as electrode-active component of lithium battery, Izvestiya Vysshikh Uchebnykh Zavedeniy Seriya Khimiya I Khimicheskaya Tekhnologiya,. 59 (2016) 92-98.

DOI: 10.6060/tcct.20165909.15y

Google Scholar

[5] M. Kijima, T. Hirukawa, F. Hanawa, T. Hata, Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials, Bioresource Technology. 102 (2011) 6279-6285.

DOI: 10.1016/j.biortech.2011.03.023

Google Scholar

[6] Yu.M. Nikolenko and A.M. Ziatdinov, Nanographite Films: Structure and Properties, Solid St. Phenomena. 247 (2016) 17-23.

DOI: 10.4028/www.scientific.net/ssp.247.17

Google Scholar

[7] S.V. Gnedenkov, D.P. Opra, L.А. Zemnukhova, S.L. Sinebryukhov, I.A. Kedrinskii, O.V. Patrusheva, V.I. Sergienko, Electrochemical performance of Klason lignin as a cathode-active material for lithium battery, J. Energ. Chem. 24 (2015) 346-352.

DOI: 10.1016/s2095-4956(15)60321-7

Google Scholar

[8] Dippel B, Jander H, Heintzenberg J. NIR FT Raman spectroscopic study of flame soot, Phys. Chem. Chem. Phys. 1 (1999) 4707-4712.

DOI: 10.1039/a904529e

Google Scholar

[9] T. Jawhari, A. Roid and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon. 33 (1995) 1561-1565.

DOI: 10.1016/0008-6223(95)00117-v

Google Scholar

[10] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[11] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, J. Phys. Chem. 53 (1970) 1126-1130.

Google Scholar

[12] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, M. A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Phys. Let. 88 (2006) 163106. Information on http://apl.aip.org/apl/copyright.jsp.

DOI: 10.1063/1.2196057

Google Scholar

[13] L. Zhao, W. Wang, A. Wang, K. Yuan, S. Chen, Y. Yang,  A novel polyquinone cathode material for rechargeable lithium batteries, J. Power Sources. 233 (2013) 23-27.

DOI: 10.1016/j.jpowsour.2013.01.103

Google Scholar

[14] W.A. Schalkwijk, B. Scrosati, Advances in lithium-ion batteries, Springer science+business media, Berlin, 2002, 513 p. ISBN 978-0-306-47508-5.

Google Scholar

[15] E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters. 8 (2008) 2277-2282.

DOI: 10.1021/nl800957b

Google Scholar