Co-Precipitation Synthesis and Photoluminescence Properties of K2SiF6:Mn4+ Red Phosphor for White Light Emitting Diodes

Article Preview

Abstract:

A novel red-emitting K2SiF6:Mn4+ phosphors with different Mn4+ doping mole fraction were synthesized by co-precipitation method. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectrometer were used to characterize the properties of K2SiF6:Mn4+ phosphors. As-prepared K2SiF6:Mn4+ phosphors have cubic crystal structure. Under excitation at 450 nm, an intense red emission peak around 632 nm corresponding to the 2Eg-4A2 transition of Mn4+ was observed for 8.37 mol% K2SiF6:Mn4+ phosphors and was used as the optimum doping concentration. The excellent luminescent properties make the phosphor K2SiF6:Mn4+ a candidate for applications in InGaN-YAG:Ce3+ type LEDs for high color rendering. “A warm” white light LED with an efficiency of 147 lm/w and a color rendering index of 87.4 at a color temperature of 2864K has been obtained by fabricating YAG:Ce3+ with K2SiF6:Mn4+ on an InGaN chip.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-109

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xy Y, X Huang, Dj Hou, D Wu, Q Li, Y Luo, Wx You, Ym Yang. Phys. B, 487(2016) 8‒12.

Google Scholar

[2] Cc Lin, A Meijerink, Rs Liu. J. Phys. Chem. Lett., 7(2016)495-503.

Google Scholar

[3] J Li, J Yan, D Wen, Wu Khan, J Shi, M Wu, Q Su, Pa Tanner. J. Mater. Chem. C, 4(2016)8611-8623.

Google Scholar

[4] X Li, X Su, P Liu, J Liu, Z Yao, J Chen, H Yao, X Yu, M Zhan. Cryst. Eng. Comm., 17(2015) 930-936.

Google Scholar

[5] Be Yeo, Ys Cho, Yd Huh. Opt. Mater., 51(2016)50-55.

Google Scholar

[6] H Ming, Sf Liu, Ll Liu, Jq Peng, Jx Fu, F Du, Xy Ye. Acs Appl. Mater. Inter., 10(2018)19783-19795.

Google Scholar

[7] H. Ming, Jf Zhang, Ll Liu, Jq Peng, F Du, Xy Ye. Ecs J Solid State Sc., 7(2018)R149-R155.

Google Scholar

[8] Cc Lin, Rs Liu. J. Phys. Chem. Lett., 2(2011)1268-1277.

Google Scholar

[9] D Chen, Y Zhou, J Zhong. Rsc Adv., 6(2016)86285-86296.

Google Scholar

[10] W Moon, Bg Min, Js Kim, Ms Jang, Km Ok, Ky Han, Js Yoo. Opt. Mater. Express, 6(2016)782-792.

Google Scholar

[11] Z Wang, Y Zhou, Z Yang, Y Liu, H Yang, H Tan, Q Zhang, Q Zhou. Opt. Mater., 49(2015)235-240.

Google Scholar

[12] M Kim, Wb Park, Ch Kim, Ks Sohn, Bk Bang. J. Mater. Chem. C., 3(2015)5484-5489.

Google Scholar

[13] S Adachi, T Takahashi. Solid-State Lett., 12(2009)J20-J23.

Google Scholar

[14] T Takahashi, S Adachi. J. Electrochem. Soc., 12(2008)E183-E188.

Google Scholar

[15] T Nakamura, Z Yuan, S Adachi. Appl. Surf. Sci., 320(2014)514-518.

Google Scholar

[16] T Takahashi, S Adachia. Electrochem. Solid St., 96(2013)3552-3556.

Google Scholar

[17] Jh Oh, H Kang, Yj Eo, Hk Park, Yr Do. J. Mater. Chem. C., 3(2015)607-615.

Google Scholar

[18] Mj Lee, Yh Song, Yl Song, Gs Han, Hs Jung, Dh Yoon. J. Mater. Lett., 141(2015)27-30.

Google Scholar

[19] C Liao, R Cao, Z Ma, Y Li, G Dong, Kn Sharafudeen, J Qiu. J. Am. Ceram. Soc., 96(2013) 3552-3556.

Google Scholar

[20] Lf Lv, Xy Jiang, Sm Huang, Xa Chen, Yx Pan. J. Mater. Chem. C., 2(2014) 3879-3884.

Google Scholar

[21] X Jiang, Z Chen, S Huang, J Wang, Y Pan. Dalton T., 43(2014)9414-9418.

Google Scholar

[22] Ll Wei, Cc Lin, Mh Fang, Mg Brik, Sf Hu, H Jiao, Rs Liu. J. Mater. Chem., 3(2015)1655-1660.

Google Scholar

[23] Hf Sijbom, R Verstraete, Jj Joos, D Poelman, Pf Smet. Opt. Mater. Express, 7(2017)3332-3365.

DOI: 10.1364/ome.7.003332

Google Scholar

[24] L Huang, Y Zhu, X Zhang, R Zou, F Pan, J Wang, M Wu. Chem. Mater., 28(2016)1495-1502.

Google Scholar

[25] Je Murphy, F Garcia-Santamaria, Aa Setlur, S Sista. Sid Symp. Dig. Tech. Pap., 46(2015) 927-930.

Google Scholar