Visible Light-Assisted Soft-Chemistry Route to Silver Nanomaterials at Room Temperature

Article Preview

Abstract:

Silver nanoparticles (AgNPs) were synthesizd by a light-assisted liquid phase reduction method with sodium hypophosphite as a reducing agent. DTAB was used to perform as the surfactant. AgNPs were characterized with powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the nanoparticles are spherical and cube. The effect of temperature on the morphology and properties of silver nanoparticles was investigated. The ultraviolet-visible (UV-vis) absorption and the fluorescent properties of the as-prepared AgNPs were explored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-170

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. EI-Sayed, Some interesting properties of metals confined in time and anometer space of different shapes, Acc. Chem. Res. 34 (4) (2001) 257–264.

DOI: 10.1021/ar960016n

Google Scholar

[2] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.

Google Scholar

[3] A. Liang, Q. Liu, G. Wen, Z. Jiang, The surface-plasmon-resonance effect of nanogold/silver and its analytical applications, TrAC Trends Anal. Chem. 37 (2012) 32–47.

DOI: 10.1016/j.trac.2012.03.015

Google Scholar

[4] M.E. Rupp, T. Fitzgerald, N. Marion, V. Helget, S. Puumala, J.R. Anderson, P.D. Fey, Am. J. Inflect. Control 32 (2004) 445–450.

DOI: 10.1016/j.ajic.2004.05.002

Google Scholar

[5] U. Samuel, J.P. Guggenbichler, Int. J. Antimicrob. Agent 23 (2004) 75–78.

Google Scholar

[6] I. Lee, S.W. Han, K. Kim, Simultaneous preparation of SERS-active metal colloids and plates by laser ablation, J. Raman Spectrosc. 32 (2001) 947–952.

DOI: 10.1002/jrs.781

Google Scholar

[7] M.S. Griffo, S.A. Carter, A.L. Holt, Enhanced photoluminescence of conjugated polymer thin films on nanostructured silver, J. Lumin. 131 (8) (2011) 1594–1598.].

DOI: 10.1016/j.jlumin.2011.02.040

Google Scholar

[8] Maier S A,Brongersma M L,Kik P G,et aL Adv.Mater.2001,13(9)l 1501.

Google Scholar

[9] K.O. Santos, W.C. Elias, A.M. Signori, F.C. Giacomell, H. Yang, J.B. Domingos, Synthesis and catalytic properties of silver nanoparticle–linear polyethylene imine colloidal systems, J. Phys. Chem. C 116 (7) (2012) 4594–4604.

DOI: 10.1021/jp2087169

Google Scholar

[10] N. Atar, T. Eren, B. Demirdögen, M.L. Yola, M.O. Çağlayan, Silver, gold, and silver@ gold nanoparticle-anchored L-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation, Ionics 21 (2015) 2285–2293.

DOI: 10.1007/s11581-015-1395-1

Google Scholar

[11] Y. Yue, Li, Y.N. Kim, E.J. Lee, W.P. Cai, S.O. Cho, Synthesis of silver nanoparticles by electron irradiation of silver acetate, Nucl. Instrum. Methods Phys. Res., Sect. B 25 (2006) 425–428.

Google Scholar

[12] N.M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, I.A. Siddiquey, A., N. Suzuki, Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation, J. Colloid Interface Sci. 355 (2011) 312–320.

DOI: 10.1016/j.jcis.2010.12.016

Google Scholar

[13] Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S. J. Colloid Interface Sci. 2007, 311, 417.

Google Scholar

[14] S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than prett gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev. 35 (2006) 209–217.

DOI: 10.1039/b514191e

Google Scholar

[15] R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science 294 (30) (2001) 1901–(1903).

DOI: 10.1126/science.1066541

Google Scholar

[16] L.H. Reddy, J.L. Arias, J. Nicolás, P. Couver, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications, Chem. Rev. 112 (2012) 5818–5878.

DOI: 10.1021/cr300068p

Google Scholar

[17] X.L. Cao, C. Cheng, Y.L. Ma, C.S. Zhao, J. Mater. Sci. Mater. 21 (2010) 2861–2868.

Google Scholar

[18] J. García-Barrasa, J.M. López-de-Luzuriaga, M. Monge, Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications, Cent. Eur. J. Chem. 9 (1) (2011) 7–19.

DOI: 10.2478/s11532-010-0124-x

Google Scholar

[19] A. Singh, D. Jain, M.K. Upadhyay, N. Khandelwal, H.N. Verma, Dig. J. Nanomater. Bios. 5 (2010) 483–489.

Google Scholar

[20] B. Shaabani, E. Alizadeh-Gheshlaghi and Y. Azizian-Kalandaragh, Adv. Powder Tech. 25 (2014) 1043.

DOI: 10.1016/j.apt.2014.02.005

Google Scholar

[21] Y.Y. Xu, X.L. Jiao and D.R. Chen, J. Phys. Chem. C 112 (2008) 16769.

Google Scholar

[22] JR Lakowicz, Principles of Fluorescence Spectroscopy, Chapter 9 Quenching of Fluorescence Plenum Press, New York, 1983, pp.257-301.

DOI: 10.1007/978-1-4615-7658-7_9

Google Scholar