Influence of Wood Mineralization on the Thermal Degradation of Material

Article Preview

Abstract:

Wood is preferably used in civil engineering for load bearing structures and facing elements. However, its disadvantage is low resistance to degradation factors, even when exposed to high temperature. Mineralization of wood matrix, for example by organosilanes, is one possibility of increasing the durability against weathering and against water exposition. In this work, the influence of the mentioned mineralization substances on the thermal degradation of solid wood is verified by means of thermal analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Reinprecht, Ochrana dreva, Technická univerzita vo Zvolene, Zvolen, (2004).

Google Scholar

[2] F. Simon, F. Marchal, F. Pochon, M. Kutnik, I. La Bayon, The potential of silicone-based formulations to enhance wood properties through industrial treatment for outdoor use, The International Research Group on Wood Protection, Stockholm, (2011).

Google Scholar

[3] P. Gláser, V. Nejedlý, Organokřemičitany v české památkové praxi, NPÚ, Praha, (2008).

Google Scholar

[4] J. Daňková, L. Reinprecht, T. Murínová, P. Mec, M. Pánek, L. Plevová, Performance of methyl-tripotassiumsilanol treated wood against swelling in water, decay fungi and moulds, Wood Research 58 (2013) 511–520.

Google Scholar

[5] L. De Vetter, J. Van den Bulcke, J. Van Acker, Impact of organosilicon treatments on the wood-water relationship of solid wood, Holzforschung 64 (2010) 463–468.

DOI: 10.1515/hf.2010.069

Google Scholar

[6] S. C. Gosh, C. Mai, H. Militz, The efficacy of commercial silicones against blue stain and mould fungi in wood, The International Research Group on Wood Protection, Stockholm, (2008).

DOI: 10.1007/s00107-008-0296-7

Google Scholar

[7] J. Šesták, Měření termofyzikálních vlastností pevných látek: Teoretická termická analýza, Academia, Praha, (1982).

Google Scholar

[8] V. S. Ramachandran, M. R. Paroli, J. J. Beaudoin, H. A. Delgado, Handbook of thermal analysis of construction materials, William Andrew, Norwich, (2002).

Google Scholar

[9] J. Jae, G. A. Tompsett, Y. Ch. Lin, T. R. Carlson, J. Shen, T. Zhang, B. Yang, Ch. E. Wyman, W. C. Connera, G. W. Huber, Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis, Energy and Environmental Science 3 (2010) 358–365.

DOI: 10.1039/b924621p

Google Scholar

[10] M. Brebu, C. Vasile, Thermal degradation of lignin – a review, Cellulose chemistry and technology 44 (2010) 353–363.

Google Scholar

[11] W. K. Tang, H. W. Eickner, Effect of Inorganic Salts on Pyrolysis of Wood, Cellulose, and Lignin Determined by Differential Thermal Analysis, Forest Products Laboratory, Madison, (1968).

Google Scholar

[12] T. Majstríková, P. Mec, J. Daňková, Application of thermal analysis for the quantification of mineralization in surface wooden layers. Key Engineering Materials 776 (2018) 3–8.

DOI: 10.4028/www.scientific.net/kem.776.3

Google Scholar

[13] Information on http://www.tainstruments.com/pdf/brochure/sdt.pdf.

Google Scholar