Effect of ZnO Nanoparticles on Grain Refinement of Mg-Al-Zn Alloy by Thixoforming Process

Article Preview

Abstract:

Thixoforming process is one method to improve the mechanical properties, especially in the manufacture of magnesium alloy components. This method is an alternative to lightweight structures and simultaneously efficient use of raw materials, fuel efficiency and environmental friendliness. The aim of this study is investigates the effect of ZnO nanoparticles addition on grain refinement of Mg-Al-Zn alloy by thixoforming. In these experiments, ZnO nanoparticles added from 0.1, 0.2, 0.3, 0.4 and 0.5 wt. % to Mg-Al-Zn alloy and thixoforming temperature set-up at 530°C. The results showed that the increasing of weight % ZnO nanoparticles cause decreasing grain size average of Mg-Al-Zn alloy both as-cast and thixoforming. On 0.5 wt. % ZnO addition was obtained grain refinement 39.87 μm (decreased 29.29%) and hardness 73.80 HB (increased 53.94%) compared to as-cast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-178

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Watarai, Trend of Research and Development for Magnesium Alloys,, Sci. Technol. Trends, no. 18, p.84–97, (2006).

Google Scholar

[2] B. B. Mark, Remarkable Magnesium : the 21st Century Structural Alloy for Small Components,, (2010).

Google Scholar

[3] M. James, J. M. Kihiu, G. O. Rading, and J. K. Kimotho, Use of Magnesium Alloys in Optimizing The Weight of Automobile : Current Trends and Opportunities,, Sustain. Res. Innov. Proc., vol. 3, p.4–6, (2011).

Google Scholar

[4] Yo Kojima, Project of Platform Science and Technology for Advanced Magnesium Alloys,, Mater. Trans., vol. 42, no. 7, p.1154–1159, (2001).

DOI: 10.2320/matertrans.42.1154

Google Scholar

[5] J. F. King, Magnesium: Commodity or Exotic?,, Mater. Sci. Technol., vol. 23, no. 1, p.1–14, (2007).

Google Scholar

[6] M. K. Kulekci, Magnesium and Its Alloys Applications in Automotive Industry,, Int. J. Adv. Manuf. Technol., vol. 39, no. 9–10, p.851–865, (2008).

DOI: 10.1007/s00170-007-1279-2

Google Scholar

[7] K. Lee, A Study on Grain Refinement of AZ91E Magnesium Alloy with Al-5TiB2, Al-Al4C3 and ZnO Additions,, Ryerson University, (2011).

DOI: 10.32920/ryerson.14653599.v1

Google Scholar

[8] W. L. Cheng, S. S. Park, W. N. Tang, B. S. You, and B. H. Koo, Influence of Alloying Elements on Microstructure and Microhardness of Mg-Sn-Zn-based Alloys,, Trans. Nonferrous Met. Soc. China (English Ed., vol. 20, no. 12, p.2246–2252, (2010).

DOI: 10.1016/s1003-6326(10)60636-x

Google Scholar

[9] Y. Zhiyong, Z. Zhaoguang, Z. Jinshan, and W. Yinghui, Effect of Cu-rich Rare Earth on Microstructure and Mechanical Properties of Mg-10Zn-5Al-0.1Sb Magnesium Alloy,, China Foundry, vol. 9, no. 2, p.131–135, (2012).

Google Scholar

[10] Y. Nakaura, A. Watanabe, and K. Ohori, Effects of Ca,Sr Additions on Properties of Mg-Al Based Alloys,, Mater. Trans., vol. 47, no. 4, p.1031–1039, (2006).

DOI: 10.2320/matertrans.47.1031

Google Scholar

[11] S. F. Liu, B. Li, X. H. Wang, W. Su, and H. Han, Refinement Effect of Cerium, Calcium and Strontium in AZ91 Magnesium Alloy,, J. Mater. Process. Technol., vol. 209, no. 8, p.3999–4004, (2009).

DOI: 10.1016/j.jmatprotec.2008.09.020

Google Scholar

[12] M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects,, Nanomaterials, vol. 2, no. 4, p.147–162, (2012).

DOI: 10.3390/nano2020147

Google Scholar

[13] B. Jiang, D. Qiu, M. X. Zhang, P. D. Ding, and L. Gao, A New Approach to Grain Refinement of an Mg-Li-Al Cast Alloy,, J. Alloys Compd., vol. 492, no. 1–2, p.95–98, (2010).

DOI: 10.1016/j.jallcom.2009.11.066

Google Scholar

[14] T. J. Chen, Y. Ma, R. Q. Wang, Y. D. Li, and Y. Hao, Microstructural Evolution during Partial Remelting of AM60B Magnesium Alloy Refined by MgCO3,, Trans. Nonferrous Met. Soc. China (English Ed., vol. 20, no. 9, p.1615–1621, (2010).

DOI: 10.1016/s1003-6326(09)60348-4

Google Scholar

[15] T. J. Chen, X. D. Jiang, Y. Ma, R. Q. Wang, and Y. Hao, Grain Refinement of AZ91D Magnesium Alloy by MgCO3,, Mater. Res., vol. 14, no. 1, p.124–133, (2011).

DOI: 10.1590/s1516-14392011005000017

Google Scholar

[16] H. M. Fu, D. Qiu, M. X. Zhang, H. Wang, P. M. Kelly, and J. A. Taylor, The Development of a New Grain Refiner for Magnesium Alloys using The Edge-to-edge Model,, J. Alloys Compd., vol. 456, no. 1–2, p.390–394, (2008).

DOI: 10.1016/j.jallcom.2007.02.076

Google Scholar

[17] S. Sankaranarayanan, U. Pranav Nayak, R. K. Sabat, S. Suwas, A. Almajid, and M. Gupta, Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response,, J. Alloys Compd., vol. 615, p.211–219, (2014).

DOI: 10.1016/j.jallcom.2014.06.163

Google Scholar

[18] Z. Mingxing, Recent Research Progress in Grain Refinement of Cast Metals., (2012).

Google Scholar

[19] S. Saha and C. Ravindran, Effects of Zinc Oxide Addition on The Microstructure and Mechanical Properties of AZ91E Mg Alloy,, Int. J. Met., vol. 9, no. 4, p.39–48, (2015).

DOI: 10.1007/bf03356039

Google Scholar

[20] X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, and K. K. Lu, Grain Refining Mechanism of ZnO Particles on Magnesium Alloys,, Indian J. Eng. Mater. Sci., vol. 23, no. 6, p.383–388, (2016).

Google Scholar

[21] Kusharjanto, S. Soepriyanto, A. A. Korda, and S. A. Dwiwanto, Effect of ZnO Nanoparticles to Mechanical Properties of Thixoformed Mg-Al-Zn Alloy,, Mater. Res. Express, vol. 5, no. 3, p.1–19, (2018).

DOI: 10.1088/2053-1591/aab3b1

Google Scholar

[22] A. Lowe, K. Ridgway, and H. Atkinson, QFD in New Production Technology Evaluation,, Int. J. Prod. Econ., vol. 67, no. 2, p.103–112, (2000).

DOI: 10.1016/s0925-5273(99)00125-5

Google Scholar

[23] C. A. Shehata, M. T.; Essadiqi, E.; Loong, Semi-Solid Processing of Magnesium Alloys,, Natl. Res. Counc. Canada, (2011).

Google Scholar