Fatty Acids in Tamarindus indica L. Seeds Oil and Antibacterial Activity Assay

Article Preview

Abstract:

The research was conducted to investigate the oil and fatty acids contained in Tamarindus indica Linn (tamarind) seeds oil. Tamarind seeds oil was isolated by extraction and fractionation. The fatty acids content in oil were identified as fatty acid methyl ester. Fatty acid methyl ester was produced from trans-esterification reaction of tamarind seed oil with methanol and boron trifluoride catalyst (MeOH/BF3). Identification of fatty acid methyl ester was carried out by gas chromatograph mass spectrometry (GC-MS). The fatty acids in the Tamarindus indica seed oil are saturated and unsaturated fatty acids. The saturated fatty acids are octanoic (12.66%), decanoic (1.68%), dodecanoic (25.18%), tetradecanoic (5.17-7.83%), hexadecanoic (9.90-16.06%), octadecanoic (3.82-4.80%), eicosanoic (0.39-1.55%), docosanoic (1.00-2.01%), and tetracosanoic (1.92-4.54%) acids. The unsaturated fatty acids are 11-octadecenoic (19.93%), 11-eicosenoic (0.76-1.03%), 9,12-octadecadienoic (21.91-38.68%), and 9-octadecenoic (17.76%) acids. The physical and antibacterial properties of the seed oil are also reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-46

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://www.doc-developpement-durable.org.

Google Scholar

[2] S.S. Bhadoriya, A. Ganeshpurkar, J. Narwari, G. Rai, A.P. Jain, Tamarindus indica: Extent of explored potential, Pharmacogn. Rev. 5 (2011) 73-81.

DOI: 10.4103/0973-7847.79102

Google Scholar

[3] F.M. Setyowati, Etnofarmakologi dan pemakaian tanaman obat suku Dayak Tunjung di Kalimanta Timur, Media Litbang Kesehatan 20, (2010) 104-112.

Google Scholar

[4] E.D. Caluwѐ, K. Halamová, P.V. Damme, Adansonia digitata L.: A review of traditional uses, phytochemistry and pharmacology, Afrika Focus 23 (2010) 53-83.

DOI: 10.21825/af.v23i1.5037

Google Scholar

[5] J.H. Doughari, Antimicrobial Activity of Tamarindus indica Linn, Trop. J. Pharm. Res. 5 (2006) 597-603.

Google Scholar

[6] U.U. Nwodo, G.E. Obiiyeke, V.N. Chigor, A.I. Okoh, Assessment of Tamarindus indica extracts for antibacterial activity, Int. J. Mol. Sci. 12 (2011) 6385-6396.

DOI: 10.3390/ijms12106385

Google Scholar

[7] Y. Sudjaroen, R. Haubner, G. Würtele, W.E. Hull, G. Erben, B. Spiegelhalder, S. Changbumrung, H. Bartsch, R.W. Owen, Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp, Food Chem. Toxicol. 43 (2005) 1673-1682.

DOI: 10.1016/j.fct.2005.05.013

Google Scholar

[8] T. Tsuda, M. Watanabe, K. Ohshima, A. Yamamoto, S. Kawakishi, T. Osawa, Antioxidative components isolated from the seed of Tamarind (Tamarindus indica L.), J. Agric. Food Chem. 42 (1994) 2671-2674.

DOI: 10.1021/jf00048a004

Google Scholar

[9] A.A. Ajayi, R.A. Oderinde, D.O. Kajogbola, J.I. Uponi, Oil content and fatty acids composition of some underutilied legumes from Nigeria, Food Chem. 99(1) (2006) 115-120.

DOI: 10.1016/j.foodchem.2005.06.045

Google Scholar

[10] R.W. Andriamanantena, J. Artaud, E.M. Gaydou, M.C. Iatrides, J.L. Chevalier, Fatty acid and sterol compositions of malagasy tamarind kernel oils, JAOCS. 60 (1983) 1318-1321.

DOI: 10.1007/bf02702108

Google Scholar

[11] C.J. Zheng, J.S. Yoo, T.G. Lee, H.Y. Cho, Y.H. Kim, W.G. Kim Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids, FEBS Letters 579 (2005) 5157-5162.

DOI: 10.1016/j.febslet.2005.08.028

Google Scholar

[12] F. Dilika, P.D. Bremner, J.J.M. Meyer, Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites, Fitoterapia 71 (2000)450-452.

DOI: 10.1016/s0367-326x(00)00150-7

Google Scholar

[13] L.J. McGaw, A.K. Jager, J.V. Staden, Isolation of antibacterial fatty acids from Schotia brachypetala, Fitoterapia 73 (2002) 431-433.

DOI: 10.1016/s0367-326x(02)00120-x

Google Scholar

[14] A. Vogel, Textbook of Practical Organic Chemistry, 4 ed., Longman, London, (1978).

Google Scholar

[15] X. Li, W. Kong, W. Shi, Q. Shen, A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils, Chemom. Intell. Lab. Syst. 155 (2016) 145-150.

DOI: 10.1016/j.chemolab.2016.03.028

Google Scholar

[16] U. Tril , J.F. Lopes, J.A.P. Álvarez, M.V. Martos, Chemical, physicochemical, technological, antibacterial, and antioxidant properties of rich-fibre powder extract obtained from tamarind (Tamarindus indica L.), Ind. Crop. Prod. 55 (2014) 155-162.

DOI: 10.1016/j.indcrop.2014.01.047

Google Scholar

[17] J.J. Kabara, D.M. Swieczkowski , A.J. Conley, J.P. Truant, Fatty acids and derivatives as antimicrobial agents, Antimicrob. Agents Chemother. 1 (1972) 23-28.

DOI: 10.1128/aac.2.1.23

Google Scholar

[18] H. Galbraith, T.B. Miller, A.M. Paton, J.K. Thompson, Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol , J. Appl. Bact. 34 (1971) 803-813.

DOI: 10.1111/j.1365-2672.1971.tb01019.x

Google Scholar

[19] B. Ouattara, R.E. Simard, R.A. Holley, G.J.P. Piette, A.A. Begin, Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms, Int. J. Food Microbiol. 37 (1997) 155-162.

DOI: 10.1016/s0168-1605(97)00070-6

Google Scholar