[1]
S. Jegou, R. Kubler, L. Barrallier, On Residual Stresses Development during Nitriding of Steel: Thermochemical and Time Dependence, Adv. Mater. Res. 89–91 (2010) 256–261.
DOI: 10.4028/www.scientific.net/amr.89-91.256
Google Scholar
[2]
P. Depouhon, J.M. Sprauel, M. Mailhé, E. Mermoz, Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel, Comput. Mater. Sci.82(2014)178-190.
DOI: 10.1016/j.commatsci.2013.09.043
Google Scholar
[3]
P. Depouhon, J.M. Sprauel, E. Mermoz, Prediction of residual stresses and distortions induced by nitriding of complex 3D industrial parts, CIRP Ann. - Manuf. Technol. 64 (2015) 553–556.
DOI: 10.1016/j.cirp.2015.03.006
Google Scholar
[4]
J. Martin, A. Martinavicius, S. Bruyère, H.P. Van Landeghem, C. Gendarme, F. Danoix, R. Danoix, A. Redjaimia, T. Grosdidier, T. Czerwiec, Multiscale analysis of an ODS FeAl40 intermetallic after plasma-assisted nitriding, J. Alloys Compd. 683 (2016) 418–426.
DOI: 10.1016/j.jallcom.2016.05.119
Google Scholar
[5]
O. Skiba, A. Redjaïmia, J. Dulcy, J. Ghanbaja, G. Marcos, N. Caldeira-Meulnotte, T. Czerwiec, A proper assessment of TEM diffraction patterns originating from CrN nitrides in a ferritic matrix, Mater. Charact. 144 (2018) 671–677.
DOI: 10.1016/j.matchar.2018.07.019
Google Scholar
[6]
T. Czerwiec, G. Marcos, T. Thiriet, Y. Guo, T. Belmonte, Austenitic stainless steel patterning by plasma assisted diffusion treatments, IOP Conf. Ser. Mater. Sci. Eng. 5 (2009) 1–8.
DOI: 10.1088/1757-899x/5/1/012012
Google Scholar
[7]
G. Marcos, S. Guilet, F. Cleymand, T. Thiriet, T. Czerwiec, Stainless steel patterning by combination of micro-patterning and driven strain produced by plasma assisted nitriding, Surf. Coatings Technol. 205 (2011) S275–S279.
DOI: 10.1016/j.surfcoat.2011.01.016
Google Scholar
[8]
J.C. Stinville, C. Templier, P. Villechaise, L. Pichon, Swelling of 316L austenitic stainless steel induced by plasma nitriding, J. Mater. Sci. 46 (2011) 5503–5511.
DOI: 10.1007/s10853-011-5494-8
Google Scholar
[9]
T. Moskalioviene, A. Galdikas, Stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Vacuum. 86 (2012) 1552–1557.
DOI: 10.1016/j.vacuum.2012.03.026
Google Scholar
[10]
W.C. Johnson, J.Y. Huh, Thermodynamics of stress-induced interstitial redistribution in body-centered cubic metals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34 (2003) 2819–2825.
DOI: 10.1007/s11661-003-0183-0
Google Scholar
[11]
T. Czerwiec, H. He, G. Marcos, T. Thiriet, S. Weber, H. Michel, Fundamental and innovations in plasma assisted diffusion of nitrogen and carbon in austenitic stainless steels and related alloys, Plasma Process. Polym. 6 (2009) 401–409.
DOI: 10.1002/ppap.200930003
Google Scholar
[12]
A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, J. Pelletier, Multi-dipolar plasmas for uniform processing: Physics, design and performance, Plasma Sources Sci. Technol. 11 (2002) 407–412.
DOI: 10.1088/0963-0252/11/4/307
Google Scholar
[13]
T. Moskalioviene, A. Galdikas, J.P. Rivière, L. Pichon, Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding, Surf. Coatings Technol. 205 (2011) 3301–3306.
DOI: 10.1016/j.surfcoat.2010.11.060
Google Scholar
[14]
M.. Fewell, J.. Priest, M.. Baldwin, G.. Collins, K.. Short, Nitriding at low temperature, Surf. Coatings Technol. 131 (2000) 284–290.
DOI: 10.1016/s0257-8972(00)00793-3
Google Scholar