AFM Measurements of the Deformation Kinetics of Silica Oxide Dots Deposited on a Sequentially Nitrided Stainless Steel

Article Preview

Abstract:

In this paper, we present the results of plasma nitriding treatments on austenitic stainless steel substrates previously coated with a patterned silicon oxide layer. For this purpose, masks were made by PECVD for the deposition of a silicon oxide layer on polished austenitic AISI 316L samples. For the final nitriding treatment, we used a multi-dipolar plasma providing independent substrate polarization. The interactions between expanded austenite and fixed silicon oxide mask in different shapes (circular and square dots) are observed by atomic force microscopy (AFM) on the same area before and after the nitriding treatment. After this thermochemical treatment, we obtain strong distortions of the dots, in particular at the edges of the larger size dots. The role of elastic deformation, due to the expanded austenitic phase formed by the diffusion of nitrogen under the mask is of primary importance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-278

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jegou, R. Kubler, L. Barrallier, On Residual Stresses Development during Nitriding of Steel: Thermochemical and Time Dependence, Adv. Mater. Res. 89–91 (2010) 256–261.

DOI: 10.4028/www.scientific.net/amr.89-91.256

Google Scholar

[2] P. Depouhon, J.M. Sprauel, M. Mailhé, E. Mermoz, Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel, Comput. Mater. Sci.82(2014)178-190.

DOI: 10.1016/j.commatsci.2013.09.043

Google Scholar

[3] P. Depouhon, J.M. Sprauel, E. Mermoz, Prediction of residual stresses and distortions induced by nitriding of complex 3D industrial parts, CIRP Ann. - Manuf. Technol. 64 (2015) 553–556.

DOI: 10.1016/j.cirp.2015.03.006

Google Scholar

[4] J. Martin, A. Martinavicius, S. Bruyère, H.P. Van Landeghem, C. Gendarme, F. Danoix, R. Danoix, A. Redjaimia, T. Grosdidier, T. Czerwiec, Multiscale analysis of an ODS FeAl40 intermetallic after plasma-assisted nitriding, J. Alloys Compd. 683 (2016) 418–426.

DOI: 10.1016/j.jallcom.2016.05.119

Google Scholar

[5] O. Skiba, A. Redjaïmia, J. Dulcy, J. Ghanbaja, G. Marcos, N. Caldeira-Meulnotte, T. Czerwiec, A proper assessment of TEM diffraction patterns originating from CrN nitrides in a ferritic matrix, Mater. Charact. 144 (2018) 671–677.

DOI: 10.1016/j.matchar.2018.07.019

Google Scholar

[6] T. Czerwiec, G. Marcos, T. Thiriet, Y. Guo, T. Belmonte, Austenitic stainless steel patterning by plasma assisted diffusion treatments, IOP Conf. Ser. Mater. Sci. Eng. 5 (2009) 1–8.

DOI: 10.1088/1757-899x/5/1/012012

Google Scholar

[7] G. Marcos, S. Guilet, F. Cleymand, T. Thiriet, T. Czerwiec, Stainless steel patterning by combination of micro-patterning and driven strain produced by plasma assisted nitriding, Surf. Coatings Technol. 205 (2011) S275–S279.

DOI: 10.1016/j.surfcoat.2011.01.016

Google Scholar

[8] J.C. Stinville, C. Templier, P. Villechaise, L. Pichon, Swelling of 316L austenitic stainless steel induced by plasma nitriding, J. Mater. Sci. 46 (2011) 5503–5511.

DOI: 10.1007/s10853-011-5494-8

Google Scholar

[9] T. Moskalioviene, A. Galdikas, Stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Vacuum. 86 (2012) 1552–1557.

DOI: 10.1016/j.vacuum.2012.03.026

Google Scholar

[10] W.C. Johnson, J.Y. Huh, Thermodynamics of stress-induced interstitial redistribution in body-centered cubic metals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34 (2003) 2819–2825.

DOI: 10.1007/s11661-003-0183-0

Google Scholar

[11] T. Czerwiec, H. He, G. Marcos, T. Thiriet, S. Weber, H. Michel, Fundamental and innovations in plasma assisted diffusion of nitrogen and carbon in austenitic stainless steels and related alloys, Plasma Process. Polym. 6 (2009) 401–409.

DOI: 10.1002/ppap.200930003

Google Scholar

[12] A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, J. Pelletier, Multi-dipolar plasmas for uniform processing: Physics, design and performance, Plasma Sources Sci. Technol. 11 (2002) 407–412.

DOI: 10.1088/0963-0252/11/4/307

Google Scholar

[13] T. Moskalioviene, A. Galdikas, J.P. Rivière, L. Pichon, Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding, Surf. Coatings Technol. 205 (2011) 3301–3306.

DOI: 10.1016/j.surfcoat.2010.11.060

Google Scholar

[14] M.. Fewell, J.. Priest, M.. Baldwin, G.. Collins, K.. Short, Nitriding at low temperature, Surf. Coatings Technol. 131 (2000) 284–290.

DOI: 10.1016/s0257-8972(00)00793-3

Google Scholar