Effect of Carbon Nanotubes Dispersion on the Microhardness of CFRP Composites

Article Preview

Abstract:

The present investigation aims at studying the effect of carbon nanotubes dispersion on the surface hardness of carbon fiber-reinforced polymer composites, manufactured by means of compression resin transfer molding. The influence of the weight fraction of nanofiller, distributed in the epoxy matrix, on the Vickers hardness values was investigated. Furthermore, the evaluation of carbon nanotubes filtering effect was also taken into account by comparing the hardness values measured at the top and bottom surfaces of the laminate composites. It was observed that the different weight loads affect the surface properties of the nano-composites, both in terms of hardness and filtering effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-375

Citation:

Online since:

July 2019

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Alunni, E. Cerri, E. Evangelista, A. Forcellese, Temperature and strain rate effect on hot formability of 6061+20 vol.% SiC whiskers, Proceedings of International Conference on Advanced Composites (1993) 1079-1085.

Google Scholar

[2] A.M. De Sanctis, E. Evangelista, A. Forcellese, Y.Z. Wang, Hot formability studies on 359/SiC/20p and their application in forging optimisation, Appl. Compos. Mater. 3 (1996) 179-198.

DOI: 10.1007/bf00135055

Google Scholar

[3] S.M. Roberts, J. Kusiak, Y.L. Liu, A. Forcellese, P.J. Withers, Prediction of damage evolution in forged aluminium metal matrix composites using a neural network approach, J. Mater. Process. Technol. 80-81 (1998) 507-512.

DOI: 10.1016/s0924-0136(98)00153-8

Google Scholar

[4] M. Holmes, Carbon fibre reinforced plastics market continues growth path, Reinf Plast 57 (2013) 24–29.

DOI: 10.1016/s0034-3617(13)70186-3

Google Scholar

[5] A. D'Orazio, M. El Mehtedi, A. Forcellese, A. Nardinocchi, M. Simoncini, Tool wear and hole quality in drilling of CFRP/AA7075 stacks with DLC and nanocomposite TiAlN coated tools, J. Manuf. Process. 30 (2017) 582–592.

DOI: 10.1016/j.jmapro.2017.10.019

Google Scholar

[6] A. D'Orazio, M. El Mehtedi, A. Forcellese, A. Nardinocchi, M. Simoncini, Study of tapping process of carbon fiber reinforced plastic composites/AA7075 stacks, AIP Conference Proceedings 1960 (2018) 070010.

DOI: 10.1063/1.5034906

Google Scholar

[7] N.E. Prasad, R.J.H. Wanhill, Aerospace materials and material technologies. Volume 1, Aerospace materials.

Google Scholar

[8] S.S. Wicks, R.G. de Villoria, B.L. Wardle, Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes, Compos Sci Technol 70 (2010) 20–28.

DOI: 10.1016/j.compscitech.2009.09.001

Google Scholar

[9] D. He, D. Salem, J. Cinquin, G.P. Piau,J. Bai, Impact of the spatial distribution of high content of carbon nanotubes on the electrical conductivity of glass fiber fabrics/epoxy composites fabricated by RTM technique, Compos Sci Technol 147 (2017) 107–115.

DOI: 10.1016/j.compscitech.2017.05.012

Google Scholar

[10] Q. Zhang, Carbon nanotubes and their applications, Pan Stanford Publishing (2012).

Google Scholar

[11] A.C. Loos, M.W. Hyer, American Society for Composites. Manufacturing of composites.

Google Scholar

[12] M. Fogel, P. Parlevliet,M. Geistbeck,P. Olivier, E. Dantras,Thermal, rheological and electrical analysis of MWCNTs/epoxy matrices, Compos Sci Technol 110 (2015) 118–125.

DOI: 10.1016/j.compscitech.2015.02.002

Google Scholar

[13] A. Terenzi, M. Natali, R. Petrucci, M. Rallini, L. Peponi, M. Beaumont, Analysis and simulation of the electrical properties of CNTs/epoxy nanocomposites for high performance composite matrices, Polym Compos 38 (2017) 105–115.

DOI: 10.1002/pc.23565

Google Scholar

[14] A. Mamoune, A. Saouab, T. Ouahbi, C.H. Park, Simple models and optimization of compression resin transfer molding process, J Reinf Plast Compos 30 (2011) 1629–1648.

DOI: 10.1177/0731684411421539

Google Scholar

[15] D. Abliz, G. Ziegmann, Y.G. Duan, D.C. Li, D. Meiners, Effect of CNT Concentration on Mechanical Properties of Composites Manufactured By Compression Resin Transfer Molding (CRTM ) (2014) 22–26.

Google Scholar

[16] H. Lee, S. Mall, P. He, D. Shi, S. Narasimhadevara, Y.H. Yun, Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique, Compos Part B Eng 38 (2007) 58–65.

DOI: 10.1016/j.compositesb.2006.04.002

Google Scholar

[17] A. El Moumen, M. Tarfaoui, K. Lafdi, Mechanical characterization of carbon nanotubes based polymer composites using indentation tests, Compos Part B Eng 114 (2017) 1–7.

DOI: 10.1016/j.compositesb.2017.02.005

Google Scholar

[18] K.K. Panchagnula, P. Kuppan, Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs, J Mater Res Technol (2018) 1–11.

DOI: 10.1016/j.jmrt.2018.02.009

Google Scholar

[19] P.M. Nagy, D. Aranyi, P. Horváth, P. Pötschke, S. Pegel, E. Kálmán, Nanoindentation Investigation of Carbon Nanotube–Polymer Composites, Internet Electron J Mol Des (2006).

Google Scholar

[20] S.G. Advani, K.T. Hsiao, Manufacturing techniques for polymer matrix composites (PMCs), Woodhead Pub (2012).

DOI: 10.1533/9780857096258.1.1

Google Scholar