Hydrogen Bonds and FTIR Peaks of Polyether Polyurethane-Urea

Article Preview

Abstract:

Various types of hydrogen bonds exist in polyether polyurethane, polyurethane-urea and polyurea (PUA) and can cause microphase separation. The morphology, properties and applications of polyether PUA are determined by the microphase separation. All kinds of hydrogen bonds make it difficult to assignments of Fourier transform infrared spectroscopy (FTIR) peaks of ether linkage, amine and carbonyl group. This affects the calculation of the hydrogen bonding degree of the hard segments for estimating the degree of microphase separation. This paper summarized hydrogen bonding structures between proton donors and proton acceptors. By analyzing the influence of electronic effect, steric effect, various types of hydrogen bonds and the degree of order of hydrogen bonding on infrared peaks, the relationships between hydrogen bonding structures and infrared peaks are established. Lay the theoretical foundation for evaluating the degree of microphase separation by FTIR method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.A. Phillips, S.L. Cooper, Phase separation in crystallizable multiblock poly (ether-ester) copolymers with poly (tetramethylene isophthalate) hard segments, Polymer. 35 (1994) 4146-4155.

DOI: 10.1016/0032-3861(94)90589-4

Google Scholar

[2] J.W.C. Van Bogart, A. Lilaonitkul, S.L. Cooper, Morphology and properties of segmented copolymers, American Chemical Society: USA,1979, pp.3-30.

DOI: 10.1021/ba-1979-0176.ch001

Google Scholar

[3] Y. Camberlin, J.P. Pascault, Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas, J. Polym. Sci., Part A: Polym. Chem. 21 (1983) 415-423.

DOI: 10.1002/pol.1983.170210211

Google Scholar

[4] R. Bonart, E.H. Müller, Phase separation in urethane elastomers as judged by low-angle X-ray scattering. I. Fundamentals, J. Macromol. Sci., Part B: Phys. B10 (1974) 177-189.

DOI: 10.1080/00222347408219403

Google Scholar

[5] T.P. Russel, J.S. Lin, S. Spooner, G.D. Wignall, Intercalibration of small-angle X-ray and neutron scattering data, J. Appl. Crystallogr. 21 (1988) 629-638.

DOI: 10.1107/s0021889888004820

Google Scholar

[6] E. Yilgör, I. Yilgor, E. Yurtsever, Hydrogen bonding and polyurethane morphology. I. quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds, Polymer. 43 (2002) 6551-6559.

DOI: 10.1016/s0032-3861(02)00567-0

Google Scholar

[7] S. Sami, E. Yildirim, M. Yurtsever, et al, Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: computational and experimental study, Polymer. 55 (2014) 4563-4576.

DOI: 10.1016/j.polymer.2014.07.028

Google Scholar

[8] E. Yilgör, E. Burgaz, E. Yurtsever, I. Yilgör, Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers, Polymer. 41 (2000) 849-857.

DOI: 10.1016/s0032-3861(99)00245-1

Google Scholar

[9] C. Akduman, I. Özgüney, E.P.A. Kumbasar, Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system, Mater. Sci. Eng., C. 64 (2016) 383-390.

DOI: 10.1016/j.msec.2016.04.005

Google Scholar

[10] W.P. Yang, Phase separation dynamics in polyurethane reaction injection molding, Ph.D. Thesis, University of Minnesota, Minneapolis (1987).

Google Scholar

[11] N. Luo, D.N. Wang, S.K. Ying, Infrared spectral analysis of hydrogen bonding in polyurethane, China Synthetic Rubber Industry. 18 (1995) 200-203.

Google Scholar

[12] I. Yilgör, E. Yilgör, G.L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a Comprehensive Review, Polymer. 58 (2015) 1-36.

DOI: 10.1016/j.polymer.2014.12.014

Google Scholar

[13] N. Luo, D.N. Wang, S.K. Ying, Hydrogen bonding of polyether poly (urethane urea)s, Polymer Bulletin. (1998) 37-43.

Google Scholar

[14] H.W. Zhu, Analysis of organic molecular structure spectrum, Chemical Industry Press: Beijing, 2005, pp.38-44.

Google Scholar

[15] C.P. Christenson, M.A. Harthcock, M.D. Meadows, et al, Model MDI/butanediol polyurethanes: molecular structure, morphology, physical and mechanical properties, J. Polym. Sci., Part B: Polym. Phys. 24 (1986) 1401-1439.

DOI: 10.1002/polb.1986.090240703

Google Scholar

[16] C.S.P. Sung, N.S. Schneider, Infrared studies of hydrogen bonding in toluene macromolecules diisocyanate based polyurethanes, Macromolecules. 8 (1975) 68-73.

DOI: 10.1021/ma60043a015

Google Scholar

[17] N. Luo, D.N. Wang, S.K. Ying, Spectral and thermal analyses of polyurea based on MDI and DETDA, China Synthetic Rubber Industry. 20 (1997) 25-28.

Google Scholar

[18] H. Ishihara, I. Kimura, K. Saito, H. Ono, Infrared studies on segmented polyurethane-urea elastomers, J. Macromol. Sci., Part B: Phys. 10 (1974) 591-618.

DOI: 10.1080/00222347408219408

Google Scholar

[19] K. Nakayama, T. Ino, I. Matsubara, Infrared spectra and structure of polyurethane elastomers from polytetrahydrofuran, diphenylmethane-4,4'-diisocyanate and ethylenediamine, J. Macromol. Sci., Part A: Pure Appl. Chem. 3 (1969) 1005-1020.

DOI: 10.1080/10601326908051929

Google Scholar

[20] N. Luo, D.N. Wang, S.K. Ying, Microphase separation study of a segmented poly(urethane urea) copolymer by IN-SITU FTIR, Acta Polymerica Sinica. (1996) 423-428.

Google Scholar

[21] T. Yamamoto, M. Shibayama, S. Nomura, Structure and properties of fatigued segmented poly (urethaneurea) s Ⅲ. Quantitative analyses of hydrogen bond, Polym. J. 21 (1989) 895-903.

DOI: 10.1295/polymj.21.895

Google Scholar

[22] H.K. Lee, S.W. Ko, Structure and thermal properties of polyether polyurethaneurea elastomers, J. Appl. Polym. Sci. 50 (1993) 1269-1280.

DOI: 10.1002/app.1993.070500718

Google Scholar

[23] C.B. Wang, S.L. Cooper, Morphology and properties of segmented polyether polyurethaneureas, Macromolecules. 16 (1983) 775-786.

DOI: 10.1021/ma00239a014

Google Scholar

[24] L. Born, H. Hespe, On the physical crosslinking of amine-extended polyurethane urea elastomers: a crystallographic analysis of bis-urea from diphenyl methane-4-isocyanate and 1, 4-butane diamine, Colloid & Polymer Science. 263 (1985) 335-341.

DOI: 10.1007/bf01412250

Google Scholar

[25] L. I. Maklakov, G. G. Suchkova, Quantum chemistry studies of far-infrared spectra of aromatic urethanes, Spectrochim. Acta, Part A. 71 (2008) 238-244.

DOI: 10.1016/j.saa.2007.12.009

Google Scholar

[26] S. H. Zhang, X.J. Song, Y.H. Li, X.H. Tan, Y.G. Wang, 1-(2,6-Difluorobenzoyl)-3-(1,3,4-thiadiazol-2-yl)urea, Acta Crystallogr., Sect. E: Crystallogr. Commun. 61 (2005) 2360-2362.

DOI: 10.1107/s1600536805020362

Google Scholar

[27] M. A. Harthcock, Probing the complex hydrogen bonding structure of urethane block copolymers and various acid containing copolymers using infrared spectroscopy, Polymer. 30 (1989) 1234-1242.

DOI: 10.1016/0032-3861(89)90041-4

Google Scholar

[28] Z. S. Chen, W.P. Yang, C.W. Macosko, The study of polyurethanes and polyureas by transmission spectra of Fourie transform infrared spectroscopy, Polymeric Materials Science and Engineering. (1993) 58-62.

Google Scholar