[1]
H. Yabing, Z. Wei, Q. Guodong, C. Banglin, Methane storage in metal-organic frameworks, J. Chem. Soc. Rev. 43 (2014) 5657-5678.
DOI: 10.1039/c4cs00032c
Google Scholar
[2]
Methane Opportunities for Vehicular Energy, Advanced Research Project Agency - Energy, U.S. Dept. of Energy, Funding Opportunity No. DE-FOA-0000672, 2012. Information on https://arpa-e-foa.energy.gov/Default.aspx?Search=DE-FOA-0000672 (accessed on March 17, 2014).
Google Scholar
[3]
L. Hailian, M. O'Keeffe, O. M. Yaghi, M. Eddaoudi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, J. Nature 402 (1999) 276-279.
DOI: 10.1038/46248
Google Scholar
[4]
S. R. Batten, S. Kitagawa, M. O'Keeffe and etc. Coordination Polymers, Metal-Organic Frameworks and the Need for Terminology Guidelines. J. Cryst. Eng. Comm. 14 (2012) 3001−3004.
DOI: 10.1039/c2ce06488j
Google Scholar
[5]
Special Issue on Metal-Organic Frameworks, J.Chem. Soc. Rev. 38 (2009) 1201-1508.
Google Scholar
[6]
K. Schlichte, T. Kratzke, S. Kaskel, Microporous Mesoporous Mater. Vol.73 (2004) 81-88.
Google Scholar
[7]
S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate), J. Am. Chem. Soc. 129 (2007) 14176–14177.
DOI: 10.1021/ja076877g
Google Scholar
[8]
D. J. Tranchemontagne, J. R. Hunt, O. M. Yaghi, Room temperature synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, J. Tetrahedron 64 (2008) 8553–8557.
DOI: 10.1016/j.tet.2008.06.036
Google Scholar
[9]
J. Hafizovic, M. Bjørgen, U. Olsbye, P.D. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K. P. Lillerud, The inconsistency in adsorption properties and powder XRDdata of MOF-5 is rationalized by framework interpenetration and the presence of organicand inorganic species in the nanocavities, J. Am. Chem. Soc. 129 (2007) 3612-20.
DOI: 10.1021/ja0675447
Google Scholar