[1]
F. Bencardino, C. Carloni, A. Condello, F. Focacci, A. Napoli, R. Realfonzo, Flexural behaviour of RC members strengthened with FRCM: State-of-the-art and predictive formulas, Compos. Part B 148 (2018) 132-148.
DOI: 10.1016/j.compositesb.2018.04.051
Google Scholar
[2]
T. D'Antino, F.G. Carozzi, P. Colombi, C. Poggi, Out-of-plane maximum resisting bending moment of masonry walls strengthened with FRCM composites, Compos. Struct. 202 (2018) 881-896.
DOI: 10.1016/j.compstruct.2018.04.054
Google Scholar
[3]
G. de Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, et al., Mortar-based systems for externally bonded strengthening of masonry, Mater. Struct. 47 (2014) 2021-2037.
DOI: 10.1617/s11527-014-0360-1
Google Scholar
[4]
ACI 549.4R-13, Guide to Design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures, Farmington Hills, MI, American Concrete Institute, (2013).
DOI: 10.1016/j.prostr.2018.11.027
Google Scholar
[5]
CNR-DT 215, Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati a matrice inorganica, Rome, Italy, Italian National Research Council, (2019).
Google Scholar
[6]
F. Focacci, T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino, An indirect method to calibrate the interfacial cohesive material law for FRCM-concrete joints, Mater. Design 128 (2017) 206-217.
DOI: 10.1016/j.matdes.2017.04.038
Google Scholar
[7]
C. Carloni, D.A. Bournas, F.G. Carozzi, T. D'Antino, G. Fava, F. Focacci, et al., Fiber reinforced composites with cementitious (inorganic) matrix, In: Design procedures for the use of composites in strengthening of reinforced concrete structures. A state of the art report of the RILEM TC 234-DUC, Springer, (2015).
DOI: 10.1007/978-94-017-7336-2_9
Google Scholar
[8]
F.G. Carozzi, C. Poggi, Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening, Compos. Part B 70 (2015) 215-230.
DOI: 10.1016/j.compositesb.2014.10.056
Google Scholar
[9]
T. D'Antino, C. Papanicolaou, Comparison between different tensile test set-ups for the mechanical characterization of inorganic-matrix composites, Constr. Build. Mater 171 (2018) 140-151.
DOI: 10.1016/j.conbuildmat.2018.03.041
Google Scholar
[10]
M. Leone, M.A. Aiello, A. Balsamo, F.G. Carozzi, F. Ceroni, M. Corradi, M. Gams, et al., Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate, Compos. Part B 127 (2017) 196-214.
DOI: 10.1016/j.compositesb.2017.06.028
Google Scholar
[11]
TCS, TCS GLASS R220AR Technical Sheet, May 2018, rev 1.
Google Scholar
[12]
TCS, ELAN-TECH MC256/W256 Technical Sheet, May 2018, rev. 1.
Google Scholar
[13]
F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation, Compos. Struct. 187 (2018) 466-480.
DOI: 10.1016/j.compstruct.2017.12.075
Google Scholar
[14]
ASTM D7565/D7565M, Standard Test Method for Determining Tensile Properties of Fiber Reinforced Polymer Matrix Composites Used for Strengthening of Civil Structures, West Conshohocken, Pennsylvania, ASTM International, (2017).
DOI: 10.1520/d7565_d7565m
Google Scholar