[1]
E. Lui, Y. Gao, J. Jia, Y. Bai, W. Wang, Microstructure and mechanical properties of in situ NiAl–Mo2C nanocomposites prepared by hot-pressing sintering, Material Science and Engineering. 592 (2014) 201-206.
DOI: 10.1016/j.msea.2013.06.078
Google Scholar
[2]
G. D Revankar, R. Roa, S Gaitonde and N Vinayak, Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process, Journal of Material Research and Technology. 6 (2017) 13-32.
DOI: 10.1016/j.jmrt.2016.03.007
Google Scholar
[3]
K. G Budinski, Tribological properties of titanium alloys, Wear. 151 (1991) 203-217.
DOI: 10.1016/0043-1648(91)90249-t
Google Scholar
[4]
A. Molinari, G. Straffelini, B. Tessi, T. Bacci, Dry sliding wear mechanisms of the Ti6Al4V alloy, Wear. 208 (1997) 105-112.
DOI: 10.1016/s0043-1648(96)07454-6
Google Scholar
[5]
C. Y Tang, C.T Wong, L.N Zhang, M.T Choy, K.C Khan, T.M Yen, Q. Chen, In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder, Journal of Alloys and Compounds. 557 (2013) 67-72.
DOI: 10.1016/j.jallcom.2012.12.147
Google Scholar
[6]
B. A. Obadele, O. O. Ige, P. A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering, Journal of Alloys and Compounds. 710 (2017) 825-830.
DOI: 10.1016/j.jallcom.2017.03.340
Google Scholar
[7]
M. B Shomgwe, S. Diouf, M. O. Durowoju, P. A Olubambi, M. M Ramakokovhu, B. O Obadele, Effect of sintering temperature on the microstructure and mechanical properties of Fe–30%Ni alloys produced by spark plasma sintering, International Journal of Refractory Metals and Hard Materials. 55 (2015) 824-832.
DOI: 10.1016/j.jallcom.2015.07.223
Google Scholar
[8]
D. V Graschenkov, O. Yu Sorokin, E. Yu Lebedeva, M. L Vagnova, Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering, Russian Journal of Applied Chemistry. 42 (2015) 386-393.
DOI: 10.1134/s1070427215030040
Google Scholar
[9]
S. Ozbilen, Satellite formation mechanism in gas atomised powders, Powder Metallurgy. 42 (1999) 70-78.
DOI: 10.1179/pom.1999.42.1.70
Google Scholar
[10]
J. I Qazi, J. Senkov, J. Rahim, A. Genc, F. H Fores, Phase transformations in Ti-6Al-4V-xH alloys, Metallurgical and Materials Transactions. 32 (2001) 2453-2463.
DOI: 10.1007/s11661-001-0035-8
Google Scholar
[11]
Wu. Binato, P. Zengxi, L. Siyuan, C. Dominic, D. Donghong, L. Huijun, The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution, Corrosion Science. 137 (2018) 176-183.
DOI: 10.1016/j.corsci.2018.03.047
Google Scholar
[12]
R. Yamanoglu, I. Daoud, E.A Olessky, Spark plasma sintering versus hot pressing – densification, bending strength, microstructure, and tribological properties of Ti5Al2.5Fe alloys, Powder Metallurgy. 61 (2018) 178-186.
DOI: 10.1080/00325899.2018.1441777
Google Scholar
[13]
A. O Adegbenjo, E. Nsiah-Baafi, M. B Shongwe, M. M Ramakokovhu, P. A Olubambi, Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 10 (2016) 560-566.
DOI: 10.1016/j.promfg.2016.12.079
Google Scholar