[1]
T.DebRoy, H.L. Wei, J.S. Zuback, T.Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A.Wilson-Heid, A.De, W.Zhang Additive manufacturing of metallic components – Process, structure and properties, Progr. in Mater. Science 92(2018) 112-224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[2]
B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Additive manufacturing by direct metal deposition, Adv. Mater.& Proc. 169(2011) 33–36.
Google Scholar
[3]
O.I. Grinin, E.A. Valdaytseva, I.T. Lasota, Y.B. Pevzner, V.V. Somonov. Feeding devices design for Selective Laser Melting formation of geterogeneous powder structures, InIOP Conference Series: Mater. Sci. and Engin. 142(2016) 1.
DOI: 10.1088/1757-899x/142/1/012059
Google Scholar
[4]
V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I. Polozov Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks, Tsvetnye Metally. 8(2015) 76-80.
DOI: 10.17580/tsm.2015.08.11
Google Scholar
[5]
L.A. Magerramova, G.A. Turichin, Y.A. Nozhnitsky, O.G. Klimova-Korsmik, B.E. Vasiliev, M.E. Volkov, A.V. Salnikov, Peculiarities of additive technologies application in the production of gas turbine engine parts, J. of Phys. 1109 (2018), Issue 1.
DOI: 10.1088/1742-6596/1109/1/012051
Google Scholar
[6]
Chunlei Qiu, G.A. Ravi, Chris Dance, Andrew Ranson, Steve Dilworth, Moataz M. Attallah Fabrication of large Ti–6Al–4V structures by direct laser deposition Journal of Alloys and Compounds 629 (2015) 351–361.
DOI: 10.1016/j.jallcom.2014.12.234
Google Scholar
[7]
S. M. Thompson, L. Bianc, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Addit. Manufac. 8(2015) 36–62.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[8]
G. Turichin, E. Zemlyakov, O. Klimova, K. Babkin Hydrodynamic instability in high-speed direct laser deposition for additive manufacturing, Phys. Proc. 83(2016) 74-83.
DOI: 10.1016/j.phpro.2016.09.001
Google Scholar
[9]
G.A. Turichin, E.V. Zemlyakov, E.Y. Pozdeeva, J. Tuominen, P. Vuoristo, Technological possibilities of laser cladding with the help of powerful fiber lasers, Metal Sci. and Heat Treat. 54, (2012) 139-144.
DOI: 10.1007/s11041-012-9470-y
Google Scholar
[10]
G. Turichin, I. Tsibulsky, V. Somonov, M. Kuznetsov, A. Akhmetov Laser-TIG welding of titanium alloys, Mater. Sci. and Engin. 142(2016) p.012009.
DOI: 10.1088/1757-899x/142/1/012009
Google Scholar
[11]
M. Neikter, P. Åkerfeldt, R. Pederson, M.-L. Antti Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes Mater. Characterization 43(2018) 68-75.
DOI: 10.1016/j.matchar.2018.02.003
Google Scholar
[12]
A.Y. Travyanov, P.V. Petrovskiy, G.A. Turichin, E.V. Zemlyakov, M. Kovac, S. Vondracek, A. Kondratiev, A.V. Khvan, V.V. Cheverikin, D.O. Ivanov, I.A. Bazhenova Prediction of solidification behaviour and microstructure of Ni based alloys obtained by casting and direct additive laser growth, Mater. Sci. and Tech. 32(2016) 46-51.
DOI: 10.1179/1743284715y.0000000134
Google Scholar
[13]
P. Heidi, A. Happonen, T. Väistö, V. Venkataramanan, J. Partanen, A. Salminena, Cost Estimation of Laser Additive Manufacturing of Stainless Steel, Phys. Proc. 78(2015) 388 – 396.
DOI: 10.1016/j.phpro.2015.11.053
Google Scholar
[14]
M.O. Sklyar, G.A. Turichin, O.G. Klimova, O.G. Zotov, I.K. Topalov. Microstructure of 316L stainless steel components produced by direct laser deposition, Steel in Translation. 46(2016) 883-887.
DOI: 10.3103/s096709121612010x
Google Scholar
[15]
M. Rashkovets, A. Nikulina, G. Turichin, O. Klimova-Korsmik, M. Sklyar Microstructure and Phase Composition of Ni-Based Alloy Obtained by High-Speed Direct Laser Deposition, J. of Mater. Engin. and Perform. 27(2018) 6398-6406.
DOI: 10.1007/s11665-018-3722-y
Google Scholar
[16]
O. Klimova-Korsmik, G. Turichin, E. Zemlyakov, K. Babkin, P. Petrovsky, A. Travyanov, Structure formation in Ni superalloys during high-speed direct laser deposition Mater. Sci. Forum 879 (2017) 978-983.
DOI: 10.4028/www.scientific.net/msf.879.978
Google Scholar
[17]
O.P. Shaboldo, S.A. Mazurov, , M.A. Skotnikova, A.I. Shamshurin, A.A. Kononov, Effect of Preliminary Quenching on the Efficiency of Hardening Heat Treatment of Cold-Deformed β-Titanium Alloy TS6 Metal Sci. and Heat Treat. 59(2017) 370-376.
DOI: 10.1007/s11041-017-0158-1
Google Scholar
[18]
Yu Sun, M. Aindow, J. Hebert Rainer Comparison of virgin Ti-6Al-4V powders for additive manufacturing Additive Manuf 21(2018) 544-555.
DOI: 10.1016/j.addma.2018.02.011
Google Scholar
[19]
W.A. Grell, E.Solis-Ramos, E.Clark, E. Lucon, E.J. Garboczi, P.K. Predecki, Z. Loftus, M. Kumos Effect of powder oxidation on the impact toughness of electron beam melting Ti-6Al-4V Additive Manuf. 17(2017) 123-134.
DOI: 10.1016/j.addma.2017.08.002
Google Scholar
[20]
G.A, Turichin, V.V. Somonov, K.D. Babkin, E.V. Zemlyakov, O.G. Klimova. High-Speed Direct Laser Deposition: Technology, Equipment and Materials. Equip.and Mater. 125(2016) 012009.
DOI: 10.1088/1757-899x/125/1/012009
Google Scholar